Bourgain–Brezis–Mironescu convergence via Triebel-Lizorkin spaces

被引:0
|
作者
Denis Brazke
Armin Schikorra
Po-Lam Yung
机构
[1] University of Heidelberg,Department of Mathematics
[2] University of Pittsburgh,Department of Mathematics
[3] The Australian National University,Mathematical Sciences Institute
来源
Calculus of Variations and Partial Differential Equations | 2023年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study a convergence result of Bourgain–Brezis–Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces Ws,p=Fp,ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p} = F^{s}_{p,p}$$\end{document}, and H1,p=Fp,21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1,p} = F^{1}_{p,2}$$\end{document}. When s→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\rightarrow 1$$\end{document}, the Fp,ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{s}_{p,p}$$\end{document} norm becomes the Fp,p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{1}_{p,p}$$\end{document} norm but BBM showed that the Ws,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}$$\end{document} norm becomes the H1,p=Fp,21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1,p} = F^{1}_{p,2}$$\end{document} norm. Naively, for p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ne 2$$\end{document} this seems like a contradiction, but we resolve this by providing embeddings of Ws,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}$$\end{document} into Fp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{s}_{p,q}$$\end{document} for q∈{p,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in \{p,2\}$$\end{document} with sharp constants with respect to s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1)$$\end{document}. As a consequence we obtain an RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown.
引用
收藏
相关论文
共 50 条
  • [1] Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces
    Brazke, Denis
    Schikorra, Armin
    Yung, Po-Lam
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [2] Bourgain-Morrey spaces meet structure of Triebel-Lizorkin spaces
    Hu, Pingxu
    Li, Yinqin
    Yang, Dachun
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (01)
  • [3] Holomorphic Triebel-Lizorkin spaces
    Ortega, JM
    Fabrega, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (01) : 177 - 212
  • [4] SPACES OF TRIEBEL-LIZORKIN TYPE
    PEETRE, J
    ARKIV FOR MATEMATIK, 1975, 13 (01): : 123 - 130
  • [5] Triebel-Lizorkin Spaces on Metric Spaces via Hyperbolic Fillings
    Bonk, Mario
    Saksman, Eero
    Soto, Tomas
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (04) : 1625 - 1663
  • [6] The Bourgain–Brezis–Mironescu formula on ball Banach function spaces
    Feng Dai
    Loukas Grafakos
    Zhulei Pan
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    Mathematische Annalen, 2024, 388 : 1691 - 1768
  • [7] A remake of Bourgain-Brezis-Mironescu characterization of Sobolev spaces
    Gounoue, Guy Fabrice Foghem
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (02):
  • [8] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350
  • [9] Extrapolation of discrete Triebel-Lizorkin spaces
    Bownik, Marcin
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 492 - 502
  • [10] Bourgain–Brezis–Mironescu Approach in Metric Spaces with Euclidean Tangents
    Wojciech Górny
    The Journal of Geometric Analysis, 2022, 32