An Interval Approach for Fuzzy Linear Regression with Imprecise Data

被引:0
|
作者
Bisserier, Amory [1 ]
Boukezzoula, Reda [1 ]
Galichet, Sylvie [1 ]
机构
[1] Univ Savoie, LISTIC, F-74941 Annecy Le Vieux, France
关键词
Interval Regression; Fuzzy Regression; Uncertainty Representation; Fuzzy Inputs-Fuzzy Outputs; OUTPUT DATA; INPUT; MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a revisited approach for fuzzy regression linear model representation and identification is introduced. By adopting the commonly used principle of alpha-cuts, the fuzzy regression implementation is reduced to the handling of conventional intervals, for inputs, parameters and outputs. Using the Midpoint-Radius representation of intervals, the uncertainty attached to linear models becomes more interpretable. Actually, it is possible to determine the output uncertainty origin (model parameters and/or inputs). In this context, a possibilistic regression method is proposed to identify models of minimal global uncertainty, that is with respect to all possible inputs.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 50 条
  • [41] Local linear regression analysis for interval-valued data
    Jang, Jungteak
    Kang, Kee-Hoon
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (03) : 365 - 376
  • [42] A new method of linear support vector regression with interval data
    Baymani, Mojtaba
    Salehi-M, Nima
    Saffaran, Hoda
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 857 - +
  • [43] On the implementation of LIR: the case of simple linear regression with interval data
    Marco E. G. V. Cattaneo
    Andrea Wiencierz
    Computational Statistics, 2014, 29 : 743 - 767
  • [44] Tolerance Approach to Possibilistic Nonlinear Regression With Interval Data
    Hladik, Milan
    Cerny, Michal
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (12) : 2509 - 2520
  • [45] A Midpoint-Radius approach to regression with interval data
    Boukezzoula, Reda
    Galichet, Sylvie
    Bisserier, Amory
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (09) : 1257 - 1271
  • [46] ON THE EFFECT OF LINEAR DATA TRANSFORMATIONS IN POSSIBILISTIC FUZZY LINEAR-REGRESSION
    JOZSEF, S
    FUZZY SETS AND SYSTEMS, 1992, 45 (02) : 185 - 188
  • [47] Fuzzy Regression Model With Interval-Valued Fuzzy Input-Output Data
    Rabiei, Mohammad Reza
    Arghami, Naser Reza
    Taheri, S. Mahmoud
    Sadeghpour, Bahram
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [48] Radial Basis Function Networks With Linear Interval Regression Weights for Symbolic Interval Data
    Su, Shun-Feng
    Chuang, Chen-Chia
    Tao, C. W.
    Jeng, Jin-Tsong
    Hsiao, Chih-Ching
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 69 - 80
  • [49] Research of fuzzy implications via fuzzy linear regression in data analysis for a fuzzy model
    Ellina, G.
    Papaschinopoulos, G.
    Papadopoulos, B. K.
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2020, 20 (03) : 879 - 888
  • [50] Fuzzy nonlinear programming approach for evaluating and ranking process yields with imprecise data
    Wu, Chien-Wei
    Liao, Mou-Yuan
    FUZZY SETS AND SYSTEMS, 2014, 246 : 142 - 155