An Interval Approach for Fuzzy Linear Regression with Imprecise Data

被引:0
|
作者
Bisserier, Amory [1 ]
Boukezzoula, Reda [1 ]
Galichet, Sylvie [1 ]
机构
[1] Univ Savoie, LISTIC, F-74941 Annecy Le Vieux, France
关键词
Interval Regression; Fuzzy Regression; Uncertainty Representation; Fuzzy Inputs-Fuzzy Outputs; OUTPUT DATA; INPUT; MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a revisited approach for fuzzy regression linear model representation and identification is introduced. By adopting the commonly used principle of alpha-cuts, the fuzzy regression implementation is reduced to the handling of conventional intervals, for inputs, parameters and outputs. Using the Midpoint-Radius representation of intervals, the uncertainty attached to linear models becomes more interpretable. Actually, it is possible to determine the output uncertainty origin (model parameters and/or inputs). In this context, a possibilistic regression method is proposed to identify models of minimal global uncertainty, that is with respect to all possible inputs.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 50 条
  • [31] A multiple linear regression model for imprecise information
    Ferraro, Maria Brigida
    Giordani, Paolo
    METRIKA, 2012, 75 (08) : 1049 - 1068
  • [32] Statistical interval-valued fuzzy systems via linear regression
    Qiu, Y
    Zhang, YQ
    Zhao, Y
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 229 - 232
  • [33] A multiple linear regression model for imprecise information
    Maria Brigida Ferraro
    Paolo Giordani
    Metrika, 2012, 75 : 1049 - 1068
  • [34] A revisited approach to linear fuzzy regression using trapezoidal fuzzy intervals
    Bisserier, Amory
    Boukezzoula, Reda
    Galichet, Sylvie
    INFORMATION SCIENCES, 2010, 180 (19) : 3653 - 3673
  • [35] FUZZY PROGRAMMING AND IMPRECISE DATA.
    Munro, John
    Civil Engineering Systems, 1984, 1 (05): : 255 - 260
  • [36] POSSIBILISTIC LINEAR-REGRESSION ANALYSIS FOR FUZZY DATA
    TANAKA, H
    HAYASHI, I
    WATADA, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 40 (03) : 389 - 396
  • [37] Residual and confidence interval for uncertain regression model with imprecise observations
    Lio, Waichon
    Liu, Baoding
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 2573 - 2583
  • [38] Neural network model for imprecise regression with interval dependent variables
    Tretiak, Krasymyr
    Schollmeyer, Georg
    Ferson, Scott
    NEURAL NETWORKS, 2023, 161 : 550 - 564
  • [39] On the implementation of LIR: the case of simple linear regression with interval data
    Cattaneo, Marco E. G. V.
    Wiencierz, Andrea
    COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 743 - 767
  • [40] Linear regression analysis for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    STAT, 2021, 10 (01):