An efficient implementation of the stretched coordinate perfectly matched layer

被引:13
|
作者
Li, Jianxiong [1 ]
Dai, Jufeng [1 ]
机构
[1] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
关键词
finite-difference time-domain (FDTD); perfectly matched layer (PML); memory;
D O I
10.1109/LMWC.2007.895690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unsplit-field and efficient algorithm to implement the stretched coordinate perfectly matched layer (SC-PML) is proposed for truncating the finite-difference time-domain lattices. The main advantage of the proposed algorithm is that only one auxiliary variable is required in all corners and some edges of the PML regions by means of direct discretizing the second-order differential equation and a memory-minimized algorithm. Two numerical tests have been provided to validate the proposed algorithm.
引用
收藏
页码:322 / 324
页数:3
相关论文
共 50 条
  • [31] Perfectly matched layer in curvilinear coordinates
    Collino, Francis
    Monk, Peter
    SIAM Journal of Scientific Computing, 1998, 19 (06): : 2061 - 2090
  • [32] The perfectly matched layer in curvilinear coordinates
    Collino, F
    Monk, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06): : 2061 - 2090
  • [33] An optimized hybrid Convolutional Perfectly Matched Layer for efficient absorption of electromagnetic waves
    Darvish, Amirashkan
    Zakeri, Bijan
    Radkani, Nafiseh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 356 : 31 - 45
  • [34] Locally-conformal perfectly matched layer implementation for finite element mesh truncation
    Ozgun, Ozlem
    Kuzuoglu, Mustafa
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (09) : 1836 - 1839
  • [35] An efficient implementation of Berenger's perfectly matched layer (PML) for finite-difference time-domain mesh truncation
    Veihl, JC
    Mittra, R
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (02): : 94 - 96
  • [36] A Memory-Efficient Implementation of Perfectly Matched Layer With Smoothly Varying Coefficients in Discontinuous Galerkin Time-Domain Method
    Chen, Liang
    Ozakin, Mehmet Burak
    Ahmed, Shehab
    Bagci, Hakan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (06) : 3605 - 3610
  • [37] Perfectly matched layer boundary condition for two-dimensional Euler equations in generalized coordinate system
    Velu, Srinivasa Perumal
    Hoffmann, Klaus A.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (6-10) : 437 - 460
  • [38] Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization
    Hugonin, JP
    Lalanne, P
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (09) : 1844 - 1849
  • [39] Perfectly matched layer for biaxial hyperbolic materials
    Ge, Zixun
    Tao, Sicen
    Chen, Huanyang
    OPTICS EXPRESS, 2023, 31 (04): : 6965 - 6973
  • [40] Curve Perfectly Matched Layer in frequency domain
    Fontaine, V.
    Aubourg, M.
    Guillon, P.
    2000, John Wiley & Sons Ltd, Chichester, United Kingdom (13) : 2 - 3