Perfectly matched layer in curvilinear coordinates

被引:0
|
作者
Collino, Francis [1 ]
Monk, Peter [1 ]
机构
[1] INRIA, Le Chesnay, France
来源
SIAM Journal of Scientific Computing | 1998年 / 19卷 / 06期
关键词
Boundary conditions - Calculations - Maxwell equations - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
In 1994 Berenger showed how to construct a perfectly matched absorbing layer for the Maxwell system in rectilinear coordinates. This layer absorbs waves of any wavelength and any frequency without reflection and thus can be used to artificially terminate the domain of scattering calculations. In this paper we show how to derive and implement the Berenger layer in curvilinear coordinates (in two space dimensions). We prove that an infinite layer of this type can be used to solve time harmonic scattering problems. We also show that the truncated Berenger problem has a solution except at a discrete set of exceptional frequencies (which might be empty). Finally numerical results show that the curvilinear layer can produce accurate solutions in the time and frequency domain.
引用
收藏
页码:2061 / 2090
相关论文
共 50 条
  • [1] The perfectly matched layer in curvilinear coordinates
    Collino, F
    Monk, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06): : 2061 - 2090
  • [2] Perfectly matched layer in cylindrical coordinates
    Teixeira, FL
    Chew, WC
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 1908 - 1911
  • [3] The Nearly Perfectly Matched Layer is a Perfectly Matched Layer
    Hu, Wenyi
    Cummer, Steven A.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2004, 3 : 137 - 140
  • [4] Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation
    Yuan, Sanyi
    Wang, Shangxu
    Sun, Wenju
    Miao, Lina
    Li, Zhenhua
    EXPLORATION GEOPHYSICS, 2014, 45 (02) : 94 - 104
  • [5] Optimizing the perfectly matched layer
    INRIA, Le Chesnay, France
    Comput Methods Appl Mech Eng, 1-2 (157-171):
  • [6] Optimizing the perfectly matched layer
    Collino, F
    Monk, PB
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 164 (1-2) : 157 - 171
  • [7] GENERALIZED PERFECTLY MATCHED LAYER - AN EXTENSION OF BERENGERS PERFECTLY MATCHED LAYER BOUNDARY-CONDITION
    FANG, JY
    WU, ZH
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (12): : 451 - 453
  • [8] Anisotropic Locally Conformal Perfectly Matched Layer for Higher Order Curvilinear Finite-Element Modeling
    Smull, Aaron P.
    Manic, Ana B.
    Manic, Sanja B.
    Notaros, Branislav M.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (12) : 7157 - 7165
  • [9] A reflectionless discrete perfectly matched layer
    Chern, Albert
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 381 : 91 - 109
  • [10] An analytical study of the discrete perfectly matched layer for the time-domain Maxwell equations in cylindrical coordinates
    Petropoulos, PG
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (07) : 1671 - 1675