Perfectly matched layer in curvilinear coordinates

被引:0
|
作者
Collino, Francis [1 ]
Monk, Peter [1 ]
机构
[1] INRIA, Le Chesnay, France
来源
SIAM Journal of Scientific Computing | 1998年 / 19卷 / 06期
关键词
Boundary conditions - Calculations - Maxwell equations - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
In 1994 Berenger showed how to construct a perfectly matched absorbing layer for the Maxwell system in rectilinear coordinates. This layer absorbs waves of any wavelength and any frequency without reflection and thus can be used to artificially terminate the domain of scattering calculations. In this paper we show how to derive and implement the Berenger layer in curvilinear coordinates (in two space dimensions). We prove that an infinite layer of this type can be used to solve time harmonic scattering problems. We also show that the truncated Berenger problem has a solution except at a discrete set of exceptional frequencies (which might be empty). Finally numerical results show that the curvilinear layer can produce accurate solutions in the time and frequency domain.
引用
收藏
页码:2061 / 2090
相关论文
共 50 条
  • [31] Perfectly Matched Layers in the Cylindrical and Spherical Coordinates for Elastic Waves in Solids
    Shimada, Takao
    Hasegawa, Koji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (07)
  • [32] Perfectly matched layers in the cylindrical and spherical coordinates for elastic waves in solids
    Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
    Jpn. J. Appl. Phys., 1600, 7 PART 2
  • [33] Perfectly Matched Layer for Galbrun's aeroacoustic equation in a cylindrical coordinates system with an axial and a swirling steady mean flow
    Baccouche, Ryan
    Ben Tahar, Mabrouk
    Moreau, Solene
    JOURNAL OF SOUND AND VIBRATION, 2016, 378 : 124 - 143
  • [34] An Efficient Unsplit Perfectly Matched Layer for Finite-Element Time-Domain Modeling of Elastodynamics in Cylindrical Coordinates
    Feng-xi Zhou
    Li-ye Wang
    Pure and Applied Geophysics, 2020, 177 : 4345 - 4363
  • [35] An Efficient Unsplit Perfectly Matched Layer for Finite-Element Time-Domain Modeling of Elastodynamics in Cylindrical Coordinates
    Zhou, Feng-xi
    Wang, Li-ye
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (09) : 4345 - 4363
  • [36] Optimization of perfectly matched layer for Laplace's equation
    Dedek, L
    Dedkova, J
    Valsa, J
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 501 - 504
  • [37] The application of a novel perfectly matched layer in magnetotelluric simulations
    Lei, Da
    Yang, Liangyong
    Fu, Changmin
    Wang, Ruo
    Wang, Zhongxing
    GEOPHYSICS, 2022, 87 (03) : E163 - E175
  • [38] A Perfectly Matched Layer Metric for the Electromagnetic Diffusion Field
    Yang, Liangyong
    Lei, Da
    Di, Qingyun
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (02) : 928 - 939
  • [39] The perfectly matched layer as a synthetic material with active inclusions
    Tretyakov, SA
    Kharina, TG
    ELECTROMAGNETICS, 2000, 20 (02) : 155 - 166
  • [40] An improved perfectly matched layer for the eigenmode expansion technique
    Niels Gregersen
    Jesper Mørk
    Optical and Quantum Electronics, 2008, 40 : 957 - 966