Monadic Decomposition

被引:7
|
作者
Veanes, Margus [1 ]
Bjorner, Nikolaj [1 ]
Nachmanson, Lev [1 ]
Bereg, Sergey [2 ]
机构
[1] Microsoft Res, One Microsoft Way, Redmond, WA 98905 USA
[2] Univ Texas Dallas, 800 West Campbell Rd, Richardson, TX 75080 USA
关键词
Symbolic automata; variable independence; satisfiability modulo theories; monadic logic; DECIDABILITY; LANGUAGES;
D O I
10.1145/3040488
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Monadic predicates play a prominent role in many decidable cases, including decision procedures for symbolic automata. We are here interested in discovering whether a formula can be rewritten into a Boolean combination of monadic predicates. Our setting is quantifier-free formulas whose satisfiability is decidable, such as linear arithmetic. Here we develop a semidecision procedure for extracting a monadic decomposition of a formula when it exists.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] MONADIC DECOMPOSITIONS
    ADAMEK, J
    HERRLICH, H
    THOLEN, W
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (02) : 111 - 123
  • [22] Monadic Systems
    Collins, Pieter
    IFAC PAPERSONLINE, 2022, 55 (30): : 486 - 491
  • [23] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 279 - 290
  • [24] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2017, 18 (03)
  • [25] MONADIC COMPLETION
    DIERS, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (21): : 1397 - 1400
  • [26] Monadic regions
    Fluet, M
    Morrisett, G
    ACM SIGPLAN NOTICES, 2004, 39 (09) : 103 - 114
  • [27] Monadic MV-algebras II: Monadic implicational subreducts
    Cimadamore, Cecilia R.
    Diaz Varela, J. Patricio
    ALGEBRA UNIVERSALIS, 2014, 71 (03) : 201 - 219
  • [28] NOTES ON MONADIC LOGIC .A. MONADIC THEORY OF THE REAL LINE
    SHELAH, S
    ISRAEL JOURNAL OF MATHEMATICS, 1988, 63 (03) : 335 - 352
  • [29] A NOTE ON THE NUMBER OF MONADIC QUANTIFIERS IN MONADIC SIGMA(1)1
    OTTO, M
    INFORMATION PROCESSING LETTERS, 1995, 53 (06) : 337 - 339
  • [30] Monadic MV-algebras II: Monadic implicational subreducts
    Cecilia R. Cimadamore
    J. Patricio Díaz Varela
    Algebra universalis, 2014, 71 : 201 - 219