Surfactant-free Pd-Fe nanoparticles supported on reduced graphene oxide as nanocatalyst for formic acid oxidation

被引:34
|
作者
Feng, Anni [1 ]
Bai, Jie [1 ]
Shao, Wenyao [1 ]
Hong, Wenjing [1 ]
Tian, Zhong-qun [1 ]
Xiao, Zongyuan [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem & Biochem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuel cells; Reduced graphene oxide; Palladium; Bimetallic Pd-Fe NPs; Formic acid oxidation; Electrocatalysis; OXYGEN REDUCTION REACTION; CORE-SHELL NANOPARTICLES; MILD-STEEL; FUEL-CELL; BIMETALLIC NANOPARTICLES; ELECTROCHEMICAL-BEHAVIOR; STRUCTURAL EVOLUTION; CORROSION PROTECTION; ELECTRONIC-STRUCTURE; GRAPHITE OXIDE;
D O I
10.1016/j.ijhydene.2017.04.278
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a novel surfactant-free nanocatalyst of Pd-Fe bimetallic nanoparticles (NPs) supported on the reduced graphene oxide (Pd-Fe/RGO) were synthesized using a two-step reduction in aqueous phase. Electrochemical studies demonstrate that the nanocatalyst exhibits superior catalytic activity towards the formic acid oxidation with high stability due to the synergic effect of Pd-Fe and RGO. The optimized Pd-Fe/RGO (Pd:Fe = 1:5) nano catalyst possess an specific activity of 2.72 mA cm(-2) and an mass activity of 1.0 A mg((pd))(-1), which are significantly higher than those of Pd/RGO and commercial Pd/C catalysts. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15196 / 15202
页数:7
相关论文
共 50 条
  • [41] Hydrogen sensing using reduced graphene oxide sheets supported by Pd nanoparticles
    Yatskiv, Roman
    Grym, Jan
    SENSORS & THEIR APPLICATIONS XVII, 2013, 450
  • [42] Pd Nanoparticles with Twin Structures on F-Doped Graphene for Formic Acid Oxidation
    Shen, Yuwei
    Zhang, Shanshan
    Liao, Fan
    Sun, Jianping
    Dang, Qian
    Shao, Mingwang
    Kang, Zhenhui
    CHEMCATCHEM, 2020, 12 (02) : 504 - 509
  • [43] Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid
    Yang, Sudong
    Shen, Chengmin
    Tian, Yuan
    Zhang, Xiaogang
    Gao, Hong-Jun
    NANOSCALE, 2014, 6 (21) : 13154 - 13162
  • [44] One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation
    Sudong Yang
    Jing Dong
    Zhaohui Yao
    Chengmin Shen
    Xuezhao Shi
    Yuan Tian
    Shaoxiong Lin
    Xiaogang Zhang
    Scientific Reports, 4
  • [45] One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation
    Yang, Sudong
    Dong, Jing
    Yao, Zhaohui
    Shen, Chengmin
    Shi, Xuezhao
    Tian, Yuan
    Lin, Shaoxiong
    Zhang, Xiaogang
    SCIENTIFIC REPORTS, 2014, 4
  • [46] PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol
    Huangqing Ye
    Yunming Li
    Jiahui Chen
    Jiali Sheng
    Xian-Zhu Fu
    Rong Sun
    Ching-Ping Wong
    Journal of Materials Science, 2018, 53 : 15871 - 15881
  • [47] PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol
    Ye, Huangqing
    Li, Yunming
    Chen, Jiahui
    Sheng, Jiali
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) : 15871 - 15881
  • [48] Facile fabrication of PtCuAu nanoparticles modified reduced graphene oxide with high electrocatalytic activity toward formic acid oxidation
    Zhang, Ke
    Wang, Huiwen
    Wang, Caiqin
    Yang, Beibei
    Ren, Fangfang
    Yang, Ping
    Du, Yukou
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 467 : 211 - 215
  • [49] Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation
    Zhang, Lian Ying
    Zhao, Zhi Liang
    Yuan, Weiyong
    Li, Chang Ming
    NANOSCALE, 2016, 8 (04) : 1905 - 1909
  • [50] Self-Assembling PDDA on Graphene to Surfactant-Free Synthesize Uniform and Ultra-Small Pd Nanocrystals by Direct CO Reduction for Efficient Catalyst Toward Formic Acid Oxidation
    Liu, Ze
    Zhang, Lian Ying
    Wang, Yi
    Zhao, Zhiliang
    Li, Chang Ming
    CHEMISTRYSELECT, 2017, 2 (10): : 3110 - 3116