Bounds on the solution of the time-varying linear matrix differential equation P(t) = AH(t)P(t) plus P(t)A(t) plus Q(t)

被引:0
|
作者
Zhu, YL [1 ]
Pagilla, PR [1 ]
机构
[1] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We derive upper and lower bounds for the trace of the solution of the time-varying linear matrix differential equation P(t) = A(H)(t)P(t) + P(t)A(t) + Q(t). The bounds obtained are useful since the considered equation is encountered in a number of applications in systems and control theory.
引用
收藏
页码:5392 / 5396
页数:5
相关论文
共 50 条
  • [31] Phase 2 neoadjuvant trial: myocet (M), cyclophosphamide (C) plus /- trastuzumab (T) and paclitaxel (P) plus /-T
    Pistilli, B.
    Benedetti, G.
    Rossi, D.
    Baldelli, A. M.
    Magalotti, C.
    Casadei, V.
    Foghini, L.
    Staffolani, M.
    Fiorentini, G.
    Latini, L.
    BREAST, 2015, 24 : S98 - S98
  • [32] On the solutions of differential equation ε2(a2(t)y′)′ plus p(t)f(y)=0 with arbitrarily large zero number
    Vrábel, R
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2004, 6 (02) : 139 - 146
  • [33] Subscalarity of operators for which T*T and T plus T* commute
    Jung, Sungeun
    Ko, Eungil
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 849 - 860
  • [34] Advanced Study on the Delay Differential Equation y′ (t) = ay(t) plus by (ct)
    Alenazy, Aneefah H. S.
    Ebaid, Abdelhalim
    Algehyne, Ebrahem A.
    Al-Jeaid, Hind K.
    MATHEMATICS, 2022, 10 (22)
  • [35] (P,D,T) PROCESS IN STRONG (P,T) TRANSITIONS
    HASHIMOTO, N
    KAWAI, M
    PHYSICS LETTERS B, 1975, 59 (03) : 223 - 226
  • [36] (T,P) AND (P,T) REACTIONS ON EVEN CE ISOTOPES
    MULLIGAN, TJ
    CASTEN, RF
    HANSEN, O
    FLYNN, ER
    PHYSICAL REVIEW C, 1972, 6 (05): : 1802 - &
  • [37] 方程(?)(t)+p(t)(?)(t)+q(t)x(t)=0的一致稳定性
    高国柱
    中国纺织大学学报, 2000, (03) : 29 - 31
  • [38] Differential cross-sections of muonic atoms scattering -: Asymmetric collisions:: pμ+(d,t), dμ+(p,t) and tμ+(p,d)
    Melezhik, VS
    Wozniak, J
    HYPERFINE INTERACTIONS, 1998, 116 (1-4): : 17 - 40
  • [39] Solvability conditions for the matrix equation X T DX plus AX plus X T B plus C=0
    Vorontsov, Yu. O.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (04) : 546 - 548
  • [40] NUMERICAL-SOLUTION OF MATRIX EQUATION P=0P0T+S
    CHITAYAT, E
    WOLF, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (02) : 168 - 169