Solvability conditions for the matrix equation X T DX plus AX plus X T B plus C=0

被引:3
|
作者
Vorontsov, Yu. O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
quadratic matrix equation; symmetric matrix; square root of a matrix; solvability of a matrix equation;
D O I
10.1134/S096554251504017X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under certain restrictions on the matrix coefficients of the quadratic matrix equation X (T) DX + AX + X (T) B + C = 0, solvability conditions for this equation are given, and its relationship with an equation of the form XAX = B is found. Certain specific types of matrix coefficients obeying the above solvability conditions are indicated.
引用
收藏
页码:546 / 548
页数:3
相关论文
共 50 条
  • [1] Conditions for unique solvability of the matrix equation AX plus X*B = C
    Vorontsov, Yu O.
    Ikramov, Khakim D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 665 - 673
  • [2] The solutions to the quadratic matrix equation X*AX plus B*X plus D=0
    Yuan, Yongxin
    Liu, Lina
    Zhang, Huiting
    Liu, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [3] Conditions for unique solvability of the matrix equation AX + X T B = C
    Ikramov, Kh. D.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 63 - 65
  • [4] Modifying a numerical algorithm for solving the matrix equation X plus AX T B = C
    Vorontsov, Yu. O.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 677 - 680
  • [5] The solution of the equation AX plus X☆B=0
    De Teran, Fernando
    Dopico, Froilan M.
    Guillery, Nathan
    Montealegre, Daniel
    Reyes, Nicolas
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) : 2817 - 2860
  • [6] FULL INVESTIGATION OF THE MATRIX EQUATION AX plus X B = C AND SPECIFICALLY OF THE EQUATION AX - X A = C
    Rabkin, E. L.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (01) : 117 - 130
  • [7] Numerical solution of matrix equations of the form X plus AX T B = C
    Vorontsov, Yu. O.
    Ikramov, Khakim D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (03) : 253 - 257
  • [8] Normality conditions for the matrix operator X → AX plus X* B
    Ikramov, Kh. D.
    CALCOLO, 2015, 52 (04) : 495 - 502
  • [9] An alternative approach for solving the quadratic matrix equation C* X*AXC plus C* X* B plus B* XC plus D=0
    Yuan, Yongxin
    Zhang, Huiting
    Liu, Lina
    Liu, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [10] Preservation of oscillations of the Runge-Kutta method for equation x′(t) plus ax(t) plus a1x([t-1])=0
    Liu, M. Z.
    Gao, J. F.
    Yang, Z. W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1113 - 1125