On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs

被引:56
|
作者
Huang, C. -S. [1 ]
Yen, H. -D. [1 ]
Cheng, A. H. -D. [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Univ Mississippi, Sch Engn, University, MS 38677 USA
关键词
Multiquadric collocation method; Meshless method; Error estimate; Arbitrary precision computation; Increasingly flat radial basis function; DATA APPROXIMATION SCHEME; SCATTERED DATA; MULTIVARIATE INTERPOLATION; FUNDAMENTAL-SOLUTIONS; COLLOCATION METHOD; MULTIQUADRICS; LIMIT;
D O I
10.1016/j.enganabound.2010.03.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the solution of PDE? In this paper, arbitrary precision computation is used to test these and other conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape parameter exists not in the limit, but at a finite value. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:802 / 809
页数:8
相关论文
共 50 条
  • [31] ON THE EFFECTS OF THE RADIAL BASIS FUNCTION SCALE PARAMETER ON THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
    Hutchcraft, W. Elliott
    Gordon, Richard K.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2009, 51 (06) : 1520 - 1524
  • [32] Symmetric radial basis function meshless approach for time dependent PDEs
    LaRocca, A
    Rosales, AH
    Power, H
    BOUNDARY ELEMENTS XXVI, 2004, 19 : 81 - 90
  • [33] Numerical solution of elliptic partial differential equation using radial basis function neural networks
    Li, JY
    Luo, SW
    Qi, YJ
    Huang, YP
    NEURAL NETWORKS, 2003, 16 (5-6) : 729 - 734
  • [34] Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs
    Bollig, Evan F.
    Flyer, Natasha
    Erlebacher, Gordon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7133 - 7151
  • [35] Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation
    Xiang, Song
    Wang, Ke-ming
    Ai, Yan-ting
    Sha, Yun-dong
    Shi, Hong
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (05) : 1931 - 1938
  • [36] A time-efficient variable shape parameter Kansa-radial basis function method for the solution of nonlinear boundary value problems
    Karageorghis, Andreas
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413
  • [37] Radial Basis Function Networks with Optimal Kernels
    Krzyzak, Adam
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 860 - 863
  • [38] On the new variable shape parameter strategies for radial basis functions
    Ahmad Golbabai
    Ehsan Mohebianfar
    Hamed Rabiei
    Computational and Applied Mathematics, 2015, 34 : 691 - 704
  • [39] On the new variable shape parameter strategies for radial basis functions
    Golbabai, Ahmad
    Mohebianfar, Ehsan
    Rabiei, Hamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02): : 691 - 704
  • [40] Radial basis function solution of the Motz problem
    Bernal, Francisco
    Kindelan, Manuel
    ENGINEERING COMPUTATIONS, 2010, 27 (5-6) : 606 - 620