On the new variable shape parameter strategies for radial basis functions

被引:41
|
作者
Golbabai, Ahmad [1 ]
Mohebianfar, Ehsan [1 ]
Rabiei, Hamed [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2015年 / 34卷 / 02期
关键词
Meshless method; Radial basis function; Constant shape parameter strategies; Variable shape parameter strategies; SCATTERED DATA INTERPOLATION; DATA APPROXIMATION SCHEME; NEURAL-NETWORK; ERROR ESTIMATE; MULTIQUADRICS; COLLOCATION;
D O I
10.1007/s40314-014-0132-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most popular meshless methods is constructed by radial kernels as basis called radial basis function method. It has a unique feature which affects significantly on accuracy and stability of approximation: existence of a free parameter known as shape parameter that can be chosen constantly or variably. Several techniques for selecting a variable shape parameter have been presented in the older works. Our study focuses on investigating the deficiency of these techniques and we introduce two new alternative strategies called hybrid shape parameter and binary shape parameter strategies based on the advantages of older studies. The proposed approaches produce the more accurate results as shown in numerical results where they are compared with random shape parameter strategy for interpolating one-dimensional and two- dimensional functions as well as in approximating the solution of Poisson equation.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 50 条
  • [1] On the new variable shape parameter strategies for radial basis functions
    Ahmad Golbabai
    Ehsan Mohebianfar
    Hamed Rabiei
    Computational and Applied Mathematics, 2015, 34 : 691 - 704
  • [2] A new variable shape parameter strategy for Gaussian radial basis function approximation methods
    Ranjbar, Mojtaba
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2015, 42 (02): : 260 - 272
  • [3] A random variable shape parameter strategy for radial basis function approximation methods
    Sarra, Scott A.
    Sturgill, Derek
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (11) : 1239 - 1245
  • [4] A novel algorithm for shape parameter selection in radial basis functions collocation method
    Gherlone, M.
    Iurlaro, L.
    Di Sciuva, M.
    COMPOSITE STRUCTURES, 2012, 94 (02) : 453 - 461
  • [5] Collocation method based on shifted Chebyshev and radial basis functions with symmetric variable shape parameter for solving the parabolic inverse problem
    Ranjbar, Mojtaba
    Aghazadeh, Mansour
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (03) : 369 - 387
  • [6] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    R. Cavoretto
    A. De Rossi
    M. S. Mukhametzhanov
    Ya. D. Sergeyev
    Journal of Global Optimization, 2021, 79 : 305 - 327
  • [7] Energy based approach for shape parameter selection in radial basis functions collocation method
    Iurlaro, L.
    Gherlone, M.
    Di Sciuva, M.
    COMPOSITE STRUCTURES, 2014, 107 : 70 - 78
  • [8] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    Cavoretto, R.
    De Rossi, A.
    Mukhametzhanov, M. S.
    Sergeyev, Ya. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (02) : 305 - 327
  • [9] Bayesian radial basis functions of variable dimension
    Holmes, CC
    Mallick, BK
    NEURAL COMPUTATION, 1998, 10 (05) : 1217 - 1233
  • [10] Shape-adaptive radial basis functions
    Webb, AR
    Shannon, S
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (06): : 1155 - 1166