Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode

被引:376
|
作者
Prakash, A. S. [2 ]
Manikandan, P. [2 ]
Ramesha, K. [2 ]
Sathiya, M. [2 ]
Tarascon, J-M. [3 ]
Shukla, A. K. [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[2] Cent Electrochem Res Inst, Chennai Unit, Madras 600113, Tamil Nadu, India
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
ELECTRODE MATERIALS; NEGATIVE ELECTRODE; LITHIUM INSERTION; SPINEL LI4TI5O12; 2-PHASE; ANATASE; STORAGE; OXIDES;
D O I
10.1021/cm100071z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m(2)/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.
引用
收藏
页码:2857 / 2863
页数:7
相关论文
共 50 条
  • [41] Structure and Electrochemical Properties of Zn-Doped Li4Ti5O12 as Anode Materials in Li-Ion Battery
    Zhang, Biao
    Du, Hongda
    Li, Baohua
    Kang, Feiyu
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (04) : A36 - A38
  • [42] Doping behavior of Br in Li4Ti5O12 anode materials and their electrochemical performance for Li-ion batteries
    Kim, Jun Beom
    Lee, Seul Gi
    Cho, Si-Young
    Kim, Jaekook
    Kim, Sang Ouk
    CERAMICS INTERNATIONAL, 2019, 45 (14) : 17574 - 17579
  • [43] Preparation of High-rate Performance Li4Ti5O12/C Anode Material in Li4Ti5O12/LiFe0.5Mn0.5PO4 Batteries
    Yang, Chun-Chen
    Hwu, Hwai-Jow
    Lin, S. J.
    Chien, Wen-Chen
    Shih, Jeng-Ywan
    ELECTROCHIMICA ACTA, 2014, 125 : 637 - 645
  • [44] High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries
    Yang, Zhen
    Huang, Qian
    Li, Shaojie
    Mao, Jian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 753 : 192 - 202
  • [45] High-performance Li-Ion capacitor constructed from biomass-derived porous carbon and high-rate Li4Ti5O12
    Lin, Yan-Ting
    Chang-Jian, Cai-Wan
    Hsieh, Tzu-Hsien
    Huang, Jen-Hsien
    Weng, Huei Chu
    Hsiao, Yu-Sheng
    Syu, Wei-Lin
    Chen, Chih-Ping
    APPLIED SURFACE SCIENCE, 2021, 543
  • [46] Li-ion battery material under high pressure:amorphization and enhanced conductivity of Li4Ti5O12
    Yanwei Huang
    Yu He
    Howard Sheng
    Xia Lu
    Haini Dong
    Sudeshna Samanta
    Hongliang Dong
    Xifeng Li
    Duck Young Kim
    Ho-kwang Mao
    Yuzi Liu
    Heping Li
    Hong Li
    Lin Wang
    NationalScienceReview, 2019, 6 (02) : 239 - 246
  • [47] Safety characteristics of the Li4Ti5O12/LiMn2O4 Li-ion battery
    Belharouak, Ilias
    Lu, Wenquan
    Amine, Khalil
    SOLID-STATE IONICS-2006, 2007, 972 : 339 - +
  • [48] Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode
    Tojo, Tomohiro
    Kawashiri, Shuhei
    Tsuda, Takao
    Kadowaki, Mizuki
    Inada, Ryoji
    Sakurai, Yoji
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 836 : 24 - 29
  • [49] Synthesis and Characterization of Li4Ti5O12 Anode Materials with Enhanced High-Rate Performance in Lithium-Ion Batteries
    Lei Wang
    Christopher Tang
    Kenneth J. Takeuchi
    Esther S. Takeuchi
    Amy C. Marschilok
    MRS Advances, 2018, 3 (11) : 575 - 580
  • [50] Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries
    Zhu, Yan-Rong
    Wang, Pengfei
    Yi, Ting-Feng
    Deng, Li
    Xie, Ying
    SOLID STATE IONICS, 2015, 276 : 84 - 89