Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode

被引:376
|
作者
Prakash, A. S. [2 ]
Manikandan, P. [2 ]
Ramesha, K. [2 ]
Sathiya, M. [2 ]
Tarascon, J-M. [3 ]
Shukla, A. K. [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[2] Cent Electrochem Res Inst, Chennai Unit, Madras 600113, Tamil Nadu, India
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
ELECTRODE MATERIALS; NEGATIVE ELECTRODE; LITHIUM INSERTION; SPINEL LI4TI5O12; 2-PHASE; ANATASE; STORAGE; OXIDES;
D O I
10.1021/cm100071z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m(2)/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.
引用
收藏
页码:2857 / 2863
页数:7
相关论文
共 50 条
  • [21] Li4Ti5O12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li-Ion Battery Electrodes
    Hao, Xiaoguang
    Bartlett, Bart M.
    ADVANCED ENERGY MATERIALS, 2013, 3 (06) : 753 - 761
  • [22] Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage
    Wei Wang
    Daiwon Choi
    Zhenguo Yang
    Metallurgical and Materials Transactions A, 2013, 44 : 21 - 25
  • [23] Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage
    Wang, Wei
    Choi, Daiwon
    Yang, Zhenguo
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A : 21 - 25
  • [24] High-rate Li4Ti5O12/C composites as anode for lithium-ion batteries
    Xiao-Dong Zheng
    Chen-Chu Dong
    Bing Huang
    Mi Lu
    Ionics, 2013, 19 : 385 - 389
  • [25] High-rate Li4Ti5O12/C composites as anode for lithium-ion batteries
    Zheng, Xiao-Dong
    Dong, Chen-Chu
    Huang, Bing
    Lu, Mi
    IONICS, 2013, 19 (03) : 385 - 389
  • [26] Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-Ion Batteries
    Jaiswal, A.
    Horne, C. R.
    Chang, O.
    Zhang, W.
    Kong, W.
    Wang, E.
    Chern, T.
    Doeff, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) : A1041 - A1046
  • [27] High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery
    Cheng, Qi
    Tang, Shun
    Liang, Jiyuan
    Zhao, Jinxing
    Lan, Qian
    Liu, Chang
    Cao, Yuan-Cheng
    RESULTS IN PHYSICS, 2017, 7 : 810 - 812
  • [28] High Tap Density Li4Ti5O12 Anode Materials Synthesized for High Rate Performance Lithium Ion Batteries
    Gao, Yuanrui
    Cheng, Chongling
    An, Juan
    Liu, Hongjiang
    Zhang, Dengsong
    Chen, Guorong
    Shi, Liyi
    CHEMISTRYSELECT, 2018, 3 (02): : 348 - 353
  • [29] Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery
    Wang, Yong-Qing
    Guo, Lin
    Guo, Yu-Guo
    Li, Hong
    He, Xiao-Qing
    Tsukimoto, Susumu
    Ikuhara, Yuichi
    Wan, Li-Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) : 7874 - 7879
  • [30] The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries
    Huang, Shahua
    Wen, Zhaoyin
    Lin, Bin
    Han, Jinduo
    Xu, Xiaogang
    Journal of Alloys and Compounds, 2008, 457 (1-2): : 400 - 403