Rational solvent selection in asymmetric hydrogenation using molecular descriptors and machine learning

被引:0
|
作者
Amar, Yehia [1 ]
Schweidtmann, Artur [2 ]
Deutsch, Paul [3 ]
Lapkin, Alexei [1 ]
机构
[1] Univ Cambridge, Chem Engn & Biotechnol, Cambridge, England
[2] Rhein Westfal TH Aachen, Aachener Verfahrenstech Proc Syst Engn, Aachen, Germany
[3] UCB Pharma SA, Braine Lalleud, Belgium
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
154
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Predicting ruthenium catalysed hydrogenation of esters using machine learning
    Mishra, Challenger
    von Wolff, Niklas
    Tripathi, Abhinav
    Brodie, Claire N.
    Lawrence, Neil D.
    Ravuri, Aditya
    Bremond, Eric
    Preiss, Annika
    Kumar, Amit
    DIGITAL DISCOVERY, 2023, 2 (03): : 819 - 827
  • [42] Machine learning-based discovery of molecular descriptors that control polymer gas permeation
    Shastry, Tejus
    Basdogan, Yasemin
    Wang, Zhen-Gang
    Kumar, Sanat K.
    Carbone, Matthew R.
    JOURNAL OF MEMBRANE SCIENCE, 2024, 697
  • [43] Identification of DNA adduct formation of small molecules by molecular descriptors and machine learning methods
    Rao, Hanbing
    Zeng, Xianyin
    Wang, Yanying
    He, Hua
    Zhu, Feng
    Li, Zerong
    Chen, Yuzong
    MOLECULAR SIMULATION, 2012, 38 (04) : 259 - 273
  • [44] Predicting Inhibitors of Acetylcholinesterase by Regression and Classification Machine Learning Approaches with Combinations of Molecular Descriptors
    Dmitriy Chekmarev
    Vladyslav Kholodovych
    Sandhya Kortagere
    William J. Welsh
    Sean Ekins
    Pharmaceutical Research, 2009, 26 : 2216 - 2224
  • [45] Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
    Zaverkin, V
    Kastner, J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (08) : 5410 - 5421
  • [46] Machine Learning Applications and Optimization of Clustering Methods Improve the Selection of Descriptors in Blackberry Germplasm Banks
    Henao-Rojas, Juan Camilo
    Rosero-Alpala, Maria Gladis
    Ortiz-Munoz, Carolina
    Velasquez-Arroyo, Carlos Enrique
    Leon-Rueda, William Alfonso
    Ramirez-Gil, Joaquin Guillermo
    PLANTS-BASEL, 2021, 10 (02): : 1 - 18
  • [47] Predicting Inhibitors of Acetylcholinesterase by Regression and Classification Machine Learning Approaches with Combinations of Molecular Descriptors
    Chekmarev, Dmitriy
    Kholodovych, Vladyslav
    Kortagere, Sandhya
    Welsh, William J.
    Ekins, Sean
    PHARMACEUTICAL RESEARCH, 2009, 26 (09) : 2216 - 2224
  • [48] Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms
    Kobayashi, Yoshiyuki
    Yoshida, Kenichi
    ECOLOGICAL INFORMATICS, 2021, 63
  • [49] Machine learning for inorganic molecular design: Descriptors and similarity in transition metal chemical space
    Janet, Jon Paul
    Kulik, Heather
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [50] CINF 61-Comparison of machine learning algorithms to predict ADME properties using chemical descriptors and molecular fingerprints
    Klon, Anthony E.
    Diller, David J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236