Rational solvent selection in asymmetric hydrogenation using molecular descriptors and machine learning

被引:0
|
作者
Amar, Yehia [1 ]
Schweidtmann, Artur [2 ]
Deutsch, Paul [3 ]
Lapkin, Alexei [1 ]
机构
[1] Univ Cambridge, Chem Engn & Biotechnol, Cambridge, England
[2] Rhein Westfal TH Aachen, Aachener Verfahrenstech Proc Syst Engn, Aachen, Germany
[3] UCB Pharma SA, Braine Lalleud, Belgium
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
154
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Small Data Machine Learning: Classification and Prediction of Poly(ethylene terephthalate) Stabilizers Using Molecular Descriptors
    Liu, Aaron L.
    Venkatesh, Rahul
    McBride, Michael
    Reichmanis, Elsa
    Meredith, J. Carson
    Grover, Martha A.
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (12) : 5592 - 5601
  • [22] Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models
    Kobayashi, Yoshiyuki
    Uchida, Takumi
    Yoshida, Kenichi
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2020, 39 (07) : 1451 - 1459
  • [23] An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors
    Jaganathan, Keerthana
    Tayara, Hilal
    Chong, Kil To
    PHARMACEUTICS, 2022, 14 (04)
  • [24] Interpretable Catalysis Models Using Machine Learning with Spectroscopic Descriptors
    Wang, Song
    Jiang, Jun
    ACS CATALYSIS, 2023, 13 (11) : 7428 - 7436
  • [25] Musical Gesture Recognition Using Machine Learning and Audio Descriptors
    Best, Paul
    Bresson, Jean
    Schwarz, Diemo
    2018 16TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2018,
  • [26] Solvent Selection Scheme Using Machine Learning Based on Physicochemical Description of Solvent Molecules: Application to Cyclic Organometallic Reaction
    Fujinami, Mikito
    Maekawara, Hiroki
    Isshiki, Ryota
    Seino, Junji
    Yamaguchi, Junichiro
    Nakai, Hiromi
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2020, 93 (07) : 841 - 845
  • [27] Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning
    Gao, Ben
    Chang, Yuqi
    Tang, Wenjun
    ORGANIC CHEMISTRY FRONTIERS, 2023, 10 (06) : 1456 - 1462
  • [28] Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach
    Walker, Theodore W.
    Chew, Alex K.
    Van Lehn, Reid C.
    Dumesic, James A.
    Huber, George W.
    TOPICS IN CATALYSIS, 2020, 63 (7-8) : 649 - 663
  • [29] Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach
    Theodore W. Walker
    Alex K. Chew
    Reid C. Van Lehn
    James A. Dumesic
    George W. Huber
    Topics in Catalysis, 2020, 63 : 649 - 663
  • [30] Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
    Lv, Wei
    Xue, Ying
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2010, 45 (03) : 1167 - 1172