Local a Posteriori error estimates and adaptive control of pollution effects

被引:26
|
作者
Liao, XH [1 ]
Nochetto, RH [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
linear elliptic problems; finite elements; local a posteriori error estimators; adaptive mesh refinement; quasi-optimal meshes;
D O I
10.1002/num.10053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H-1-type local error indicators in a slightly larger subdomain, plus weighted L-2-type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi-optimal meshes. (C) 2003 Wiley Periodicals. Inc.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 50 条
  • [41] A posteriori error estimates and an adaptive scheme of least-squares meshfree method
    Park, SH
    Kwon, KC
    Youn, SK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) : 1213 - 1250
  • [42] A posteriori error estimates and adaptive mesh refinement for the Stokes-Brinkman problem
    Williamson, Kevin
    Burda, Pavel
    Sousedik, Bedrich
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 166 : 266 - 282
  • [43] POSTERIORI ERROR ESTIMATES IN ITERATIVE PROCEDURES
    OSTROWSKI, AM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 290 - 298
  • [44] A posteriori error estimates for Maxwell equations
    Schoeberl, Joachim
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 633 - 649
  • [45] A POSTERIORI ERROR ESTIMATES FOR THE RICHARDS EQUATION
    Mitra, K.
    Vohralik, M.
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1053 - 1096
  • [46] A Posteriori error estimates for parameter identification
    Becker, R
    Vexler, B
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 131 - 140
  • [47] A Posteriori Error Estimates for HDG Methods
    Bernardo Cockburn
    Wujun Zhang
    Journal of Scientific Computing, 2012, 51 : 582 - 607
  • [48] A posteriori error estimates for operator equations
    Slawik, L
    Karafiat, A
    NUMERICAL METHODS AND ERROR BOUNDS, 1996, 89 : 241 - 248
  • [49] A Posteriori Error Estimates for Nonstationary Problems
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 225 - 233
  • [50] A posteriori error estimates for optimal distributed control governed by the evolution equations
    Xiong, Chunguang
    Li, Yuan
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) : 181 - 200