Local a Posteriori error estimates and adaptive control of pollution effects

被引:26
|
作者
Liao, XH [1 ]
Nochetto, RH [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
linear elliptic problems; finite elements; local a posteriori error estimators; adaptive mesh refinement; quasi-optimal meshes;
D O I
10.1002/num.10053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H-1-type local error indicators in a slightly larger subdomain, plus weighted L-2-type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi-optimal meshes. (C) 2003 Wiley Periodicals. Inc.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 50 条