Compactness and Sharp Lower Bound for a 2D Smectics Model

被引:1
|
作者
Novack, Michael [1 ]
Yan, Xiaodong [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Connecticut, Dept Math, Storrs, CT USA
关键词
Liquid crystal; Smectics; Calculus of variations; SINGULAR PERTURBATION; CONCERTINA PATTERN; DISLOCATIONS; CRYSTALS; ENERGY;
D O I
10.1007/s00332-021-09717-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D smectics model E-is an element of (u) = 1/2 integral(Omega) 1/epsilon (u(z) - 1/2 u(x)(2)) (2) + epsilon (u(xx))(2) dx dz. For epsilon(n) -> 0 and a sequence {u(n)} with bounded energies E epsilon(n) (u(n)), we prove compactness of {partial derivative(z)u(n)} in L-2 and {partial derivative(x)u(n)} in Lq for any 1 <= q < p under the additional assumption parallel to partial derivative(x)u(n)parallel to L p <= C for some p > 6. We also prove a sharp lower bound on Ee when epsilon -> 0. The sharp bound corresponds to the energy of a 1D ansatz in the transition region.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A Calibration Method of 2D Lidar and a Camera Based on Effective Lower Bound Estimation of Observation Probability
    Peng Meng
    Wan Qin
    Chen Baifan
    Wu Shuyue
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (07) : 2478 - 2487
  • [42] Sharp Fano resonance in 2D photonic crystal and the applications
    Bing Chen
    De-yuan Chen
    Yu Xia
    Yan Zhang
    Meng-fan Li
    Optoelectronics Letters, 2020, 16 : 349 - 354
  • [43] Sharp Fano resonance in 2D photonic crystal and the applications
    Chen, Bing
    Chen, De-yuan
    Xia, Yu
    Zhang, Yan
    Li, Meng-fan
    OPTOELECTRONICS LETTERS, 2020, 16 (05) : 349 - 354
  • [44] Sharp Fano resonance in 2D photonic crystal and the applications
    陈兵
    陈德媛
    夏雨
    张岩
    李梦凡
    Optoelectronics Letters, 2020, 16 (05) : 349 - 354
  • [45] Urbanization between compactness and dispersion: designing a spatial model for measuring 2D binary settlement landscape configurations
    Taubenbock, Hannes
    Wurm, Michael
    Geiss, Christian
    Dech, Stefan
    Siedentop, Stefan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2019, 12 (06) : 679 - 698
  • [46] A sharp minimax lower bound for the nonparametric estimation of Sobolev densities of order 1/2
    Efromovich, Sam
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (02) : 77 - 81
  • [47] An upper bound on the entropy of constrained 2d fields
    Forchhammer, S
    Justesen, J
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 72 - 72
  • [48] The meson as a bound system in 2D quantum chromodynamics
    Kurai, Teruo
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (05):
  • [49] A sharp lower bound for the sum of a sine series with convex coefficients
    Solodov, A. P.
    SBORNIK MATHEMATICS, 2016, 207 (12) : 1743 - 1777
  • [50] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Chen, Xiaodan
    Hou, Yaoping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2011 - 2018