Compactness and Sharp Lower Bound for a 2D Smectics Model

被引:1
|
作者
Novack, Michael [1 ]
Yan, Xiaodong [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Connecticut, Dept Math, Storrs, CT USA
关键词
Liquid crystal; Smectics; Calculus of variations; SINGULAR PERTURBATION; CONCERTINA PATTERN; DISLOCATIONS; CRYSTALS; ENERGY;
D O I
10.1007/s00332-021-09717-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D smectics model E-is an element of (u) = 1/2 integral(Omega) 1/epsilon (u(z) - 1/2 u(x)(2)) (2) + epsilon (u(xx))(2) dx dz. For epsilon(n) -> 0 and a sequence {u(n)} with bounded energies E epsilon(n) (u(n)), we prove compactness of {partial derivative(z)u(n)} in L-2 and {partial derivative(x)u(n)} in Lq for any 1 <= q < p under the additional assumption parallel to partial derivative(x)u(n)parallel to L p <= C for some p > 6. We also prove a sharp lower bound on Ee when epsilon -> 0. The sharp bound corresponds to the energy of a 1D ansatz in the transition region.
引用
收藏
页数:26
相关论文
共 50 条