On the Complexity of Computing Discrete Logarithms over Algebraic Tori

被引:0
|
作者
Isobe, Shuji [1 ]
Koizumi, Eisuke [1 ]
Nishigaki, Yuji [1 ]
Shizuya, Hiroki [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808576, Japan
来源
CRYPTOLOGY AND NETWORK SECURITY, PROCEEDINGS | 2009年 / 5888卷
关键词
algebraic ton; order certified discrete logarithms; Tuning reduction; CRYPTOGRAPHY; CRYPTOSYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the complexity of computing discrete logarithms oven algebraic ton We show that the ordel certified version of the disciete logarithm over general finite fields (OCDL in symbols) reduces to the discrete logarithm over algebraic ton (TDL, in symbols) with respect to the polynomial-nine Turing leducibility This reduction means that if the integer factorization can be computed in polynomial time, then TDL is equivalent to the discrete logarithm DL over general finite fields with respect to the Turing reducibility
引用
收藏
页码:433 / 442
页数:10
相关论文
共 50 条
  • [32] Trapdooring discrete logarithms on elliptic curves over rings
    Paillier, P
    ADVANCES IN CRYPTOLOGY ASIACRYPT 2000, PROCEEDINGS, 2000, 1976 : 573 - 584
  • [33] ON COMPUTING LOGARITHMS OVER GF(2P)
    HERLESTAM, T
    JOHANNESSON, R
    BIT, 1981, 21 (03): : 326 - 334
  • [34] Finiteness theorems for algebraic tori over function fields
    Rapinchuk, Andrei S.
    Rapinchuk, Igor A.
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (08) : 939 - 944
  • [35] Logarithms of algebraic numbers
    Kuehne, Lars
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (02): : 499 - 535
  • [36] COMPUTING DISCRETE LOGARITHMS IN THE JACOBIAN OF HIGH-GENUS HYPERELLIPTIC CURVES OVER EVEN CHARACTERISTIC FINITE FIELDS
    Velichka, M. D.
    Jacobson, M. J., Jr.
    Stein, A.
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 935 - 963
  • [37] A variant of the Galbraith-Ruprai algorithm for discrete logarithms with improved complexity
    Zhu, Yuqing
    Zhuang, Jincheng
    Yi, Hairong
    Lv, Chang
    Lin, Dongdai
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 971 - 986
  • [38] On post-processing in the quantum algorithm for computing short discrete logarithms
    Ekera, Martin
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (11) : 2313 - 2335
  • [39] On post-processing in the quantum algorithm for computing short discrete logarithms
    Martin Ekerå
    Designs, Codes and Cryptography, 2020, 88 : 2313 - 2335
  • [40] Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers
    Ekera, Martin
    Hastad, Johan
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2017, 2017, 10346 : 347 - 363