On the Complexity of Computing Discrete Logarithms over Algebraic Tori

被引:0
|
作者
Isobe, Shuji [1 ]
Koizumi, Eisuke [1 ]
Nishigaki, Yuji [1 ]
Shizuya, Hiroki [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808576, Japan
来源
CRYPTOLOGY AND NETWORK SECURITY, PROCEEDINGS | 2009年 / 5888卷
关键词
algebraic ton; order certified discrete logarithms; Tuning reduction; CRYPTOGRAPHY; CRYPTOSYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the complexity of computing discrete logarithms oven algebraic ton We show that the ordel certified version of the disciete logarithm over general finite fields (OCDL in symbols) reduces to the discrete logarithm over algebraic ton (TDL, in symbols) with respect to the polynomial-nine Turing leducibility This reduction means that if the integer factorization can be computed in polynomial time, then TDL is equivalent to the discrete logarithm DL over general finite fields with respect to the Turing reducibility
引用
收藏
页码:433 / 442
页数:10
相关论文
共 50 条
  • [22] Computing discrete logarithms with the general number field sieve
    Weber, D
    ALGORITHMIC NUMBER THEORY, 1996, 1122 : 391 - 403
  • [23] ON COMPUTING LOGARITHMS OVER FINITE-FIELDS
    ELGAMAL, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 218 : 396 - 402
  • [24] Discrete logarithms in curves over finite fields
    Enge, Andreas
    FINITE FIELDS AND APPLICATIONS, 2008, 461 : 119 - 139
  • [25] Quantum algorithms for computing general discrete logarithms and orders with tradeoffs
    Ekera, Martin
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2021, 15 (01) : 359 - 407
  • [26] A variant of the Galbraith–Ruprai algorithm for discrete logarithms with improved complexity
    Yuqing Zhu
    Jincheng Zhuang
    Hairong Yi
    Chang Lv
    Dongdai Lin
    Designs, Codes and Cryptography, 2019, 87 : 971 - 986
  • [28] On the complexity of computing with planar algebraic curves
    Kobel, Alexander
    Sagraloff, Michael
    JOURNAL OF COMPLEXITY, 2015, 31 (02) : 206 - 236
  • [29] AN ALGEBRAIC THEORY OF COMPLEXITY FOR DISCRETE OPTIMIZATION
    Cohen, David A.
    Cooper, Martin C.
    Creed, Paidi
    Jeavons, Peter G.
    Zivny, Stanislav
    SIAM JOURNAL ON COMPUTING, 2013, 42 (05) : 1915 - 1939
  • [30] Memory Optimization Techniques for Computing Discrete Logarithms in Compressed SIKE
    Hutchinson, Aaron
    Karabina, Koray
    Pereira, Geovandro
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2021, 2021, 12841 : 296 - 315