Coincidences of multiple fibre-preserving maps

被引:0
|
作者
Mendes Monis, Thais Fernanda [1 ]
Silva, Weslem Liberato [2 ]
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Av 24A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Estadual Santa Cruz UESC, Dept Ciencias Exatas & Tecnol, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil
关键词
Coincidence; Obstruction theory; Fibre-preserving maps; FIXED-POINTS; BUNDLES;
D O I
10.1016/j.topol.2020.107550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following problem: given X hooked right arrow M hooked right arrow B and Y hooked right arrow N -> B smooth fibre bundles over Band f(1),..., f(k): M -> N fibre-preserving maps, is it possible to deform (f(1),...,f(k)) similar to (f(1)',..., f(k)') via a fibrewise homotopy over B such that the set of coincidence points of f(1)',..., f(k)': M -> N is empty? We study this question making use of obstruction theory. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multiple coincidences in dimensions d≤3
    Baake, M.
    Zeiner, P.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2869 - 2876
  • [42] Jiang-type theorems for coincidences of maps into homogeneous spaces
    Vendruscolo, Daniel
    Wong, Peter
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2008, 31 (01) : 151 - 160
  • [43] FIXED-POINTS AND COINCIDENCES FOR MULTIVALUED MAPS-III
    BENELMECHAIEKH, H
    DEGUIRE, P
    GRANAS, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (09): : 381 - 384
  • [44] Coincidences of projections and linear n-valued maps of tori
    Brown, Robert F.
    Lin, Jon T. Lo Kim
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (12) : 1990 - 1998
  • [45] FIXED-POINTS AND COINCIDENCES FOR MULTIVALUED MAPS WITHOUT CONVEXITY
    HORVATH, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (09): : 403 - 406
  • [46] COINCIDENCES OF FIBREWISE MAPS BETWEEN SPHERE BUNDLES OVER THE CIRCLE
    Goncalves, Daciberg L.
    Koschorke, Ulrich
    Libardi, Alice K. M.
    Neto, Oziride Manzoli
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) : 713 - 735
  • [47] Coincidences of Lipschitz-type hybrid maps and invariant approximation
    Khan, A. R.
    Domilo, A. A.
    Hussain, N.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (9-10) : 1165 - 1177
  • [48] FIXED-POINTS AND COINCIDENCES FOR SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    GRANAS, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (04): : 337 - 340
  • [49] Two topological definitions of a Nielsen number for coincidences of noncompact maps
    Andres J.
    Väth M.
    Fixed Point Theory and Applications, 2004 (1) : 49 - 69
  • [50] Maps completely preserving idempotents and maps completely preserving square-zero operators
    Hou, Jinchuan
    Huang, Li
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) : 363 - 380