Coincidences of multiple fibre-preserving maps

被引:0
|
作者
Mendes Monis, Thais Fernanda [1 ]
Silva, Weslem Liberato [2 ]
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Av 24A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Estadual Santa Cruz UESC, Dept Ciencias Exatas & Tecnol, Rodovia Jorge Amado,Km 16, BR-45662900 Ilheus, BA, Brazil
关键词
Coincidence; Obstruction theory; Fibre-preserving maps; FIXED-POINTS; BUNDLES;
D O I
10.1016/j.topol.2020.107550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following problem: given X hooked right arrow M hooked right arrow B and Y hooked right arrow N -> B smooth fibre bundles over Band f(1),..., f(k): M -> N fibre-preserving maps, is it possible to deform (f(1),...,f(k)) similar to (f(1)',..., f(k)') via a fibrewise homotopy over B such that the set of coincidence points of f(1)',..., f(k)': M -> N is empty? We study this question making use of obstruction theory. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ESTIMATION OF MULTIPLE COINCIDENCES
    VINCENT, CH
    NUCLEAR INSTRUMENTS & METHODS, 1975, 127 (03): : 421 - 427
  • [22] Coincidences for maps of spaces with finite group actions
    Gonçalves, DL
    Jaworowski, J
    Pergher, PLQ
    Volovikov, AY
    TOPOLOGY AND ITS APPLICATIONS, 2004, 145 (1-3) : 61 - 68
  • [23] Obstruction theory and coincidences of maps between nilmanifolds
    Gonçalves, D
    Wong, P
    ARCHIV DER MATHEMATIK, 2005, 84 (06) : 568 - 576
  • [24] Obstruction theory and coincidences of maps between nilmanifolds
    Daciberg Gonçalves
    Peter Wong
    Archiv der Mathematik, 2005, 84 : 568 - 576
  • [25] ASYMPTOTIC DISTRIBUTION OF MULTIPLE COINCIDENCES
    HAFNER, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 21 (02): : 96 - &
  • [26] Location Privacy-Preserving Scheme Based on Multiple Virtual Maps
    Yan, Shaojun
    Liang, Haihua
    Zhang, Xinpeng
    CLOUD COMPUTING AND SECURITY, PT V, 2018, 11067 : 440 - 452
  • [27] Addition formulae for Nielsen numbers and Nielsen type numbers of fibre preserving maps defined locally
    Li, Changbok
    TOPOLOGY AND ITS APPLICATIONS, 2020, 277
  • [28] Coincidences and fixed point theorems for singlevalued and multivalued maps
    Singh, SL
    Giniswamy
    FIXED POINT THEORY AND APPLICATIONS, VOL 5, 2004, : 127 - 139
  • [29] Configuration-like spaces and coincidences of maps on orbits
    Karasev, R. N.
    Volovikov, A. Yu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (02): : 1033 - 1052
  • [30] COINCIDENCES FOR SET-VALUED MAPS AND MINIMAX INEQUALITIES
    GRANAS, A
    LIU, FC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1986, 65 (02): : 119 - 148