NetKet: A machine learning toolkit for many-body quantum systems

被引:81
|
作者
Carleo, Giuseppe [1 ]
Choo, Kenny [2 ]
Hofmann, Damian [3 ]
Smith, James E. T. [4 ]
Westerhout, Tom [5 ]
Alet, Fabien [6 ]
Davis, Emily J. [7 ]
Efthymiou, Stavros [8 ]
Glasser, Ivan [8 ]
Lin, Sheng-Hsuan [9 ]
Mauri, Marta [1 ,10 ]
Mazzola, Guglielmo [11 ]
Mendl, Christian B. [12 ]
van Nieuwenburg, Evert [13 ]
O'Reilly, Ossian [14 ]
Theveniaut, Hugo [6 ]
Torlai, Giacomo [1 ]
Vicentini, Filippo [15 ]
Wietek, Alexander [1 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Colorado, Dept Chem, Boulder, CO 80302 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Toulouse, Lab Phys Theor, IRSAMC, CNRS,UPS, F-31062 Toulouse, France
[7] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[8] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[9] Tech Univ Munich, Dept Phys, T42,James Franck Str 1, D-85748 Garching, Germany
[10] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[11] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[12] Tech Univ Dresden, Inst Sci Comp, Zellescher Weg 12-14, D-01069 Dresden, Germany
[13] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[14] Univ Southern Calif, Southern Calif Earthquake Ctr, 3651 Trousdale Pkwy, Los Angeles, CA 90089 USA
[15] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
关键词
Neural-network quantum states; Variational Monte Carlo; Quantum state tomography; Machine learning; Supervised learning; WAVE-FUNCTIONS; MONTE-CARLO;
D O I
10.1016/j.softx.2019.100311
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Randomness of Eigenstates of Many-Body Quantum Systems
    Sun, Li-Zhen
    Nie, Qingmiao
    Li, Haibin
    ENTROPY, 2019, 21 (03):
  • [32] THERMODYNAMICAL PROPERTIES OF QUANTUM MANY-BODY SYSTEMS
    GAGLIANO, ER
    BACCI, S
    PHYSICAL REVIEW LETTERS, 1989, 62 (10) : 1154 - 1156
  • [33] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [34] Thermodynamics of quantum dissipative many-body systems
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    PHYSICAL REVIEW E, 1999, 60 (01): : 231 - 241
  • [35] Entropy Minimization for Many-Body Quantum Systems
    Duboscq, Romain
    Pinaud, Olivier
    JOURNAL OF STATISTICAL PHYSICS, 2021, 185 (01)
  • [36] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [37] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [38] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [39] Quantum Many-Body Systems in Thermal Equilibrium
    Alhambra, Alvaro M.
    PRX QUANTUM, 2023, 4 (04):
  • [40] Quantum hypothesis testing in many-body systems
    de Boer, Jan
    Godet, Victor
    Kastikainen, Jani
    Keski-Vakkuri, Esko
    SCIPOST PHYSICS CORE, 2021, 4 (02):