NetKet: A machine learning toolkit for many-body quantum systems

被引:81
|
作者
Carleo, Giuseppe [1 ]
Choo, Kenny [2 ]
Hofmann, Damian [3 ]
Smith, James E. T. [4 ]
Westerhout, Tom [5 ]
Alet, Fabien [6 ]
Davis, Emily J. [7 ]
Efthymiou, Stavros [8 ]
Glasser, Ivan [8 ]
Lin, Sheng-Hsuan [9 ]
Mauri, Marta [1 ,10 ]
Mazzola, Guglielmo [11 ]
Mendl, Christian B. [12 ]
van Nieuwenburg, Evert [13 ]
O'Reilly, Ossian [14 ]
Theveniaut, Hugo [6 ]
Torlai, Giacomo [1 ]
Vicentini, Filippo [15 ]
Wietek, Alexander [1 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Colorado, Dept Chem, Boulder, CO 80302 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Toulouse, Lab Phys Theor, IRSAMC, CNRS,UPS, F-31062 Toulouse, France
[7] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[8] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[9] Tech Univ Munich, Dept Phys, T42,James Franck Str 1, D-85748 Garching, Germany
[10] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[11] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[12] Tech Univ Dresden, Inst Sci Comp, Zellescher Weg 12-14, D-01069 Dresden, Germany
[13] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[14] Univ Southern Calif, Southern Calif Earthquake Ctr, 3651 Trousdale Pkwy, Los Angeles, CA 90089 USA
[15] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
关键词
Neural-network quantum states; Variational Monte Carlo; Quantum state tomography; Machine learning; Supervised learning; WAVE-FUNCTIONS; MONTE-CARLO;
D O I
10.1016/j.softx.2019.100311
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Efficient learning of many-body systems
    Chen, Sitan
    NATURE PHYSICS, 2024, 20 (06) : 899 - 900
  • [22] Machine Learning for Many-Body Localization Transition
    饶文嘉
    Chinese Physics Letters, 2020, 37 (08) : 17 - 23
  • [23] Machine Learning for Many-Body Localization Transition*
    Rao, Wen-Jia
    CHINESE PHYSICS LETTERS, 2020, 37 (08)
  • [24] Deep learning representations for quantum many-body systems on heterogeneous hardware
    Liang, Xiao
    Li, Mingfan
    Xiao, Qian
    Chen, Junshi
    Yang, Chao
    An, Hong
    He, Lixin
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [25] Finding the Dynamics of an Integrable Quantum Many-Body System via Machine Learning
    Wei, Victor
    Orfi, Alev
    Fehse, Felix
    Coish, William A.
    ADVANCED PHYSICS RESEARCH, 2024, 3 (01):
  • [26] Editorial: Tensor network approaches for quantum many-body physics and machine learning
    Ran, Shi-Ju
    Zhao, Qibin
    Zhang, Peng
    Guo, Chu
    FRONTIERS IN PHYSICS, 2023, 11
  • [27] Approximating power of machine-learning ansatz for quantum many-body states
    Borin, Artem
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [28] Quantum trajectories and open many-body quantum systems
    Daley, Andrew J.
    ADVANCES IN PHYSICS, 2014, 63 (02) : 77 - 149
  • [29] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [30] Distributed thermal tasks on many-body systems through a single quantum machine
    Leggio, Bruno
    Doyeux, Pierre
    Messina, Riccardo
    Antezza, Mauro
    EPL, 2015, 112 (04)