NetKet: A machine learning toolkit for many-body quantum systems

被引:81
|
作者
Carleo, Giuseppe [1 ]
Choo, Kenny [2 ]
Hofmann, Damian [3 ]
Smith, James E. T. [4 ]
Westerhout, Tom [5 ]
Alet, Fabien [6 ]
Davis, Emily J. [7 ]
Efthymiou, Stavros [8 ]
Glasser, Ivan [8 ]
Lin, Sheng-Hsuan [9 ]
Mauri, Marta [1 ,10 ]
Mazzola, Guglielmo [11 ]
Mendl, Christian B. [12 ]
van Nieuwenburg, Evert [13 ]
O'Reilly, Ossian [14 ]
Theveniaut, Hugo [6 ]
Torlai, Giacomo [1 ]
Vicentini, Filippo [15 ]
Wietek, Alexander [1 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Colorado, Dept Chem, Boulder, CO 80302 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Toulouse, Lab Phys Theor, IRSAMC, CNRS,UPS, F-31062 Toulouse, France
[7] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[8] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[9] Tech Univ Munich, Dept Phys, T42,James Franck Str 1, D-85748 Garching, Germany
[10] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[11] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[12] Tech Univ Dresden, Inst Sci Comp, Zellescher Weg 12-14, D-01069 Dresden, Germany
[13] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[14] Univ Southern Calif, Southern Calif Earthquake Ctr, 3651 Trousdale Pkwy, Los Angeles, CA 90089 USA
[15] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
关键词
Neural-network quantum states; Variational Monte Carlo; Quantum state tomography; Machine learning; Supervised learning; WAVE-FUNCTIONS; MONTE-CARLO;
D O I
10.1016/j.softx.2019.100311
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine learning approach to dynamical properties of quantum many-body systems
    Hendry, Douglas
    Feiguin, Adrian E.
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [2] Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems
    Deng, Dong-Ling
    PHYSICAL REVIEW LETTERS, 2018, 120 (24)
  • [3] Uncovering quantum many-body scars with quantum machine learning
    Feng, Jia-Jin
    Zhang, Bingzhi
    Yang, Zhi-Cheng
    Zhuang, Quntao
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [4] Machine learning many-body potentials for colloidal systems
    Campos-Villalobos, Gerardo
    Boattini, Emanuele
    Filion, Laura
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (17):
  • [5] Certificates of quantum many-body properties assisted by machine learning
    Requena, Borja
    Munoz-Gil, Gorka
    Lewenstein, Maciej
    Dunjko, Vedran
    Tura, Jordi
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [6] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [7] Learning quantum many-body systems from a few copies
    Rouze, Cambyse
    Franca, Daniel Stilck
    QUANTUM, 2024, 8
  • [8] Sample-efficient learning of quantum many-body systems
    Anshu, Anurag
    Arunachalam, Srinivasan
    Kuwahara, Tomotaka
    Soleimanifar, Mehdi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 685 - 691
  • [9] Controlling nonergodicity in quantum many-body systems by reinforcement learning
    Ye, Li-Li
    Lai, Ying-Cheng
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [10] Machine-learning-inspired quantum control in many-body dynamics
    Mao, Meng-Yun
    Cheng, Zheng
    Li, Liangsheng
    Wu, Ning
    You, Wen -Long
    PHYSICAL REVIEW A, 2024, 109 (04)