Pointwise estimates for transition probabilities of random walks on infinite graphs

被引:0
|
作者
Coulhon, T [1 ]
Grigor'yan, A [1 ]
机构
[1] Univ Cergy Pontoise, F-95000 Cergy, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条
  • [11] Random walks on infinite self-similar graphs
    Neunhaeuserer, J.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1258 - 1275
  • [12] Chaos in nonlinear random walks with nonmonotonic transition probabilities
    Chitrakar, Digesh
    Skardal, Per Sebastian
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [13] Limits of random walks with distributionally robust transition probabilities
    Bartl, Daniel
    Eckstein, Stephan
    Kupper, Michael
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [14] Transition probability estimates for subordinate random walks
    Cygan, Wojciech
    Sebek, Stjepan
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (03) : 518 - 558
  • [15] Diffusive estimates for random walks on stationary random graphs of polynomial growth
    Shirshendu Ganguly
    James R. Lee
    Yuval Peres
    Geometric and Functional Analysis, 2017, 27 : 596 - 630
  • [16] Diffusive estimates for random walks on stationary random graphs of polynomial growth
    Ganguly, Shirshendu
    Lee, James R.
    Peres, Yuval
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (03) : 596 - 630
  • [17] Hypergroups derived from random walks on some infinite graphs
    Ikkai, Tomohiro
    Sawada, Yusuke
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 321 - 353
  • [18] Hypergroups derived from random walks on some infinite graphs
    Tomohiro Ikkai
    Yusuke Sawada
    Monatshefte für Mathematik, 2019, 189 : 321 - 353
  • [19] A random environment for linearly edge-reinforced random walks on infinite graphs
    Merkl, Franz
    Rolles, Silke W. W.
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) : 157 - 176
  • [20] A random environment for linearly edge-reinforced random walks on infinite graphs
    Franz Merkl
    Silke W. W. Rolles
    Probability Theory and Related Fields, 2007, 138 : 157 - 176