Hypergroups derived from random walks on some infinite graphs

被引:0
|
作者
Tomohiro Ikkai
Yusuke Sawada
机构
[1] Nagoya University,Graduate School of Mathematics
来源
关键词
Hermitian discrete hypergroups; Distance-regular graphs; Association schemes; Cayley graphs; Infinite graphs; Primary 43A62; Secondary 05C81;
D O I
暂无
中图分类号
学科分类号
摘要
Wildberger gave a method to construct a finite hermitian discrete hypergroup from a random walk on a certain kind of finite graphs. In this article, we reveal that his method is applicable to a random walk on certain kinds of infinite graphs. Moreover, we make some observations of finite or infinite graphs on which a random walk produces a hermitian discrete hypergroup.
引用
收藏
页码:321 / 353
页数:32
相关论文
共 50 条
  • [1] Hypergroups derived from random walks on some infinite graphs
    Ikkai, Tomohiro
    Sawada, Yusuke
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 321 - 353
  • [2] HYPERGROUPS AND DISTANCE DISTRIBUTIONS OF RANDOM WALKS ON GRAPHS
    Endo, Kenta
    Mimura, Ippei
    Sawada, Yusuke
    MATHEMATICA SCANDINAVICA, 2021, 127 (01) : 43 - 62
  • [3] Random walks and physical models on infinite graphs: an introduction
    Burioni, R
    Cassi, D
    Vezzani, A
    RANDOM WALKS AND GEOMETRY, 2004, : 35 - 71
  • [4] On the asymptotic spectrum of random walks on infinite families of graphs
    Grigorchuk, RI
    Zuk, A
    RANDOM WALKS AND DISCRETE POTENTIAL THEORY, 1999, 39 : 188 - 204
  • [5] Random walks on infinite self-similar graphs
    Neunhaeuserer, J.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1258 - 1275
  • [6] Pointwise estimates for transition probabilities of random walks on infinite graphs
    Coulhon, T
    Grigor'yan, A
    FRACTALS IN GRAZ 2001: ANALYSIS - DYNAMICS - GEOMETRY - STOCHASTICS, 2003, : 119 - 134
  • [7] A random environment for linearly edge-reinforced random walks on infinite graphs
    Merkl, Franz
    Rolles, Silke W. W.
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) : 157 - 176
  • [8] A random environment for linearly edge-reinforced random walks on infinite graphs
    Franz Merkl
    Silke W. W. Rolles
    Probability Theory and Related Fields, 2007, 138 : 157 - 176
  • [9] A DICHOTOMY THEOREM FOR RANDOM-WALKS ON HYPERGROUPS
    KUMAR, A
    SINGH, AI
    LECTURE NOTES IN MATHEMATICS, 1989, 1379 : 179 - 184
  • [10] Growth series and random walks on some hyperbolic graphs
    Bartholdi, L
    Ceccherini-Silberstein, TG
    MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03): : 181 - 202