Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells

被引:64
|
作者
He, Donglin [1 ]
Liu, Guoliang [1 ,2 ]
Wang, Ailian [3 ]
Ji, Wenxi [3 ]
Wu, Jianing [3 ]
Tang, Haolin [1 ,2 ]
Lin, Weiran [4 ]
Zhang, Taoyi [3 ]
Zhang, Haining [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Foshan Xianhu Lab, Foshan 528200, Peoples R China
[3] Sinopec Beijing Res Inst Chem Ind Co Ltd, Beijing 100013, Peoples R China
[4] Tsinghua Univ, Fundamental Ind Training Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
Alkali-free quaternization; Polybenzimidazole; Phosphoric acid retention; Proton exchange membrane fuel cells; High-temperature; COMPOSITE MEMBRANES; IONIC LIQUID; CONDUCTIVITY; PEM;
D O I
10.1016/j.memsci.2022.120442
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Although phosphoric acid doped polybenzimidazole has been proposed as promising high-temperature proton exchange membrane, the poor absorption and immobilization ability of phosphoric acid in the membrane hinders its long-term stability. In this work, high-temperature proton exchange membranes with high phosphoric acid uptake and retention ability are fabricated thorough solvent casting of an alkali-free quaternized poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI), followed by doping of phosphoric acid. The optimized membrane with quaternization degree of 50% possesses a high acid-doping-level of 18.8 and an anhydrous conductivity of 85 mS cm(-1) at 160 degrees C. Stability tests reveal that anhydrous proton conductivity remains unchanged during continuous 100 h treatment at 160 degrees C and it remains 91.7% of its initial value after 100 h treatment at 80 degrees C under 40% RH. The thus-assembled single cell exhibits the maximum power density values of 0.355, 0.495, and 0.584 Wcm(-2) at 160 degrees C under back pressure of 0, 100, and 200 kPa using hydrogen as fuel and air as oxidant gas.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells
    Xue, Chao
    Zou, Jing
    Sun, Zhaonan
    Wang, Fanghui
    Han, Kefei
    Zhu, Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) : 7931 - 7939
  • [42] Ion Dynamics and Mechanical Properties of Sulfonated Polybenzimidazole Membranes for High-Temperature Proton Exchange Membrane Fuel Cells
    Nicotera, Isabella
    Kosma, Vasiliki
    Simari, Cataldo
    Angioni, Simone
    Mustarelli, Piercarlo
    Quartarone, Eliana
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (18): : 9745 - 9753
  • [43] Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
    Qu, Erli
    Hao, Xiaofeng
    Xiao, Min
    Han, Dongmei
    Huang, Sheng
    Huang, Zhiheng
    Wang, Shuanjin
    Meng, Yuezhong
    JOURNAL OF POWER SOURCES, 2022, 533
  • [44] Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes
    Schonvogel, Dana
    Belack, Jörg
    Vidakovic, Jurica
    Schmies, Henrike
    Uhlig, Lisa M.
    Langnickel, Hendrik
    Man Tung, Patrick Kin
    Meyer, Quentin
    Zhao, Chuan
    Wagner, Peter
    Journal of Power Sources, 2024, 591
  • [45] Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells
    Jheng, Li-Cheng
    Rosidah, Afira Ainur
    Hsu, Steve Lien-Chung
    Ho, Ko-Shan
    Pan, Chun-Jern
    Cheng, Cheng-Wei
    RSC ADVANCES, 2021, 11 (17) : 9964 - 9976
  • [46] Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Chen, Jianuo
    Byun, Jae Jong
    Perez-Page, Maria
    Ji, Zhaoqi
    Zhao, Ziyu
    Holmes, Stuart M.
    JOURNAL OF MEMBRANE SCIENCE, 2022, 641
  • [47] Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes
    Schonvogel, Dana
    Belack, Joerg
    Vidakovic, Jurica
    Schmies, Henrike
    Uhlig, Lisa M.
    Langnickel, Hendrik
    Tung, Patrick Kin Man
    Meyer, Quentin
    Zhao, Chuan
    Wagner, Peter
    JOURNAL OF POWER SOURCES, 2024, 591
  • [48] Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?
    Melchior, Jan-Patrick
    Majer, Guenter
    Kreuer, Klaus-Dieter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (01) : 601 - 612
  • [49] Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell
    Ergun, Dilek
    Devrim, Yilser
    Bac, Nurcan
    Eroglu, Inci
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 124 : E267 - E277
  • [50] Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells
    Tang, Tsung-Hsien
    Su, Po-Hao
    Liu, Yu-Chen
    Yu, T. Leon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (21) : 11145 - 11156