Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells

被引:64
|
作者
He, Donglin [1 ]
Liu, Guoliang [1 ,2 ]
Wang, Ailian [3 ]
Ji, Wenxi [3 ]
Wu, Jianing [3 ]
Tang, Haolin [1 ,2 ]
Lin, Weiran [4 ]
Zhang, Taoyi [3 ]
Zhang, Haining [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Foshan Xianhu Lab, Foshan 528200, Peoples R China
[3] Sinopec Beijing Res Inst Chem Ind Co Ltd, Beijing 100013, Peoples R China
[4] Tsinghua Univ, Fundamental Ind Training Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
Alkali-free quaternization; Polybenzimidazole; Phosphoric acid retention; Proton exchange membrane fuel cells; High-temperature; COMPOSITE MEMBRANES; IONIC LIQUID; CONDUCTIVITY; PEM;
D O I
10.1016/j.memsci.2022.120442
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Although phosphoric acid doped polybenzimidazole has been proposed as promising high-temperature proton exchange membrane, the poor absorption and immobilization ability of phosphoric acid in the membrane hinders its long-term stability. In this work, high-temperature proton exchange membranes with high phosphoric acid uptake and retention ability are fabricated thorough solvent casting of an alkali-free quaternized poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI), followed by doping of phosphoric acid. The optimized membrane with quaternization degree of 50% possesses a high acid-doping-level of 18.8 and an anhydrous conductivity of 85 mS cm(-1) at 160 degrees C. Stability tests reveal that anhydrous proton conductivity remains unchanged during continuous 100 h treatment at 160 degrees C and it remains 91.7% of its initial value after 100 h treatment at 80 degrees C under 40% RH. The thus-assembled single cell exhibits the maximum power density values of 0.355, 0.495, and 0.584 Wcm(-2) at 160 degrees C under back pressure of 0, 100, and 200 kPa using hydrogen as fuel and air as oxidant gas.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Polybenzimidazole/poly(tetrafluoro ethylene) composite membranes for high temperature proton exchange membrane fuel cells
    Lin, Hsiu-Li
    Huang, Jun-Ru
    Chen, Yen-Ting
    Su, Po-Hao
    Yu, T. Leon
    Chan, Shih-Hung
    JOURNAL OF POLYMER RESEARCH, 2012, 19 (05)
  • [22] Polybenzimidazole/poly(tetrafluoro ethylene) composite membranes for high temperature proton exchange membrane fuel cells
    Hsiu-Li Lin
    Jun-Ru Huang
    Yen-Ting Chen
    Po-Hao Su
    T. Leon Yu
    Shih-Hung Chan
    Journal of Polymer Research, 2012, 19
  • [23] Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells
    Jheng, Li-Cheng
    Chang, Wesley Jen-Yang
    Hsu, Steve Lien-Chung
    Cheng, Po Yang
    JOURNAL OF POWER SOURCES, 2016, 323 : 57 - 66
  • [24] A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells
    Jheng, Li-Cheng
    Hsu, Steve Lien-Chung
    Tsai, Tzung-Yu
    Chang, Wesley Jen-Yang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) : 4225 - 4233
  • [25] Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2009, 189 (02) : 943 - 949
  • [26] Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells
    Subianto, Surya
    POLYMER INTERNATIONAL, 2014, 63 (07) : 1134 - 1144
  • [27] Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Perez-Page, Maria
    Chen, Jianuo
    Ji, Zhaoqi
    Holmes, Stuart M.
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 393 - 429
  • [28] Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells
    Kwon, Kyungjung
    Park, Jung Ock
    Yoo, Duck Young
    Yi, Jung S.
    ELECTROCHIMICA ACTA, 2009, 54 (26) : 6570 - 6575
  • [29] Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes
    Yang, Jingshuai
    Gao, Liping
    Wang, Jin
    Xu, Yixin
    Liu, Chao
    He, Ronghuan
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2017, 218 (10)
  • [30] Synthesis of novel cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells
    Shen, Cheng-Hsun
    Hsu, Steve Lien-Chung
    JOURNAL OF MEMBRANE SCIENCE, 2013, 443 : 138 - 143