Robust Estimation of HDR in fMRI using H∞ Filters

被引:0
|
作者
Puthusserypady, S. [1 ]
Jue, Rui [2 ,3 ]
Ratnarajah, T. [4 ]
机构
[1] Tech Univ Denmark, Dept Elect Engn, Lyngby, Denmark
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] DSO Natl Labs, Singapore 118230, Singapore
[4] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT3 9DT, Antrim, North Ireland
关键词
Activation detection; functional MRI (fMRI); hemodynamic response (HDR); H-infinity filters; EVENT-RELATED FMRI; HEMODYNAMIC-RESPONSE FUNCTION; MODEL;
D O I
10.1109/TBME.2009.2039569
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H-infinity adaptive filters (finite memory, exponentially weighted, and timevarying) for accurate estimation and detection of the HDR. The H8 approach is used because it safeguards against the worst case disturbances and makes no assumptions on the (statistical) nature of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP, 1995, vol. 2, pp. 949-952; T. Ratnarajah and S. Puthusserypady, in Proc. 8th IEEEWorkshopDSP, 1998, pp. 1483-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections.
引用
收藏
页码:1133 / 1142
页数:10
相关论文
共 50 条
  • [31] Robust Frequency and Phase Estimation for Three-Phase Power Systems Using a Bank of Kalman Filters
    Stuart, Zahraa Krayem
    El-Laham, Yousef
    Bugallo, Monica F.
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1235 - 1239
  • [32] Robust HDR image quality assessment using combination of quality metrics
    Choudhury, Anustup
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (31-32) : 22843 - 22867
  • [33] Robust HDR image quality assessment using combination of quality metrics
    Anustup Choudhury
    Multimedia Tools and Applications, 2020, 79 : 22843 - 22867
  • [34] Distributed robust estimation over randomly switching networks using H∞ consensus
    Ugrinovskii, V.
    AUTOMATICA, 2013, 49 (01) : 160 - 168
  • [35] Robust recursive H∞ DOA estimation using spatial forward linear predictor
    Chang, Ann-Chen
    Hsu, Chun
    Su, Ing-Jiunn
    WIRELESS PERSONAL COMMUNICATIONS, 2008, 46 (04) : 451 - 462
  • [36] A robust signal-copy beamformer using H-infinity estimation
    Ratnarajah, T
    Manikas, A
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 551 - 555
  • [37] Robust H2 estimation using the Popov-Tsypkin multiplier
    Collins Jr., Emmanuel G.
    Song, Tinglun
    Proceedings of the IEEE Conference on Decision and Control, 1998, 1 : 1189 - 1194
  • [38] Robust H2 estimation using the Popov-Tsypkin multiplier
    Collins, EG
    Song, TL
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1189 - 1194
  • [39] Robust Recursive H∞ DOA Estimation Using Spatial Forward Linear Predictor
    Ann-Chen Chang
    Chun Hsu
    Ing-Jiunn Su
    Wireless Personal Communications, 2008, 46 : 451 - 462
  • [40] Base oscillation estimation via multiple H∞ filters
    Lecture Notes in Control and Information Sciences, 2016, 463 : 123 - 137