Robust Estimation of HDR in fMRI using H∞ Filters

被引:0
|
作者
Puthusserypady, S. [1 ]
Jue, Rui [2 ,3 ]
Ratnarajah, T. [4 ]
机构
[1] Tech Univ Denmark, Dept Elect Engn, Lyngby, Denmark
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] DSO Natl Labs, Singapore 118230, Singapore
[4] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT3 9DT, Antrim, North Ireland
关键词
Activation detection; functional MRI (fMRI); hemodynamic response (HDR); H-infinity filters; EVENT-RELATED FMRI; HEMODYNAMIC-RESPONSE FUNCTION; MODEL;
D O I
10.1109/TBME.2009.2039569
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H-infinity adaptive filters (finite memory, exponentially weighted, and timevarying) for accurate estimation and detection of the HDR. The H8 approach is used because it safeguards against the worst case disturbances and makes no assumptions on the (statistical) nature of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP, 1995, vol. 2, pp. 949-952; T. Ratnarajah and S. Puthusserypady, in Proc. 8th IEEEWorkshopDSP, 1998, pp. 1483-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections.
引用
收藏
页码:1133 / 1142
页数:10
相关论文
共 50 条
  • [21] Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques of fMRI
    Yeo, Desmond Teck Beng
    Fessler, Jeffrey A.
    Kim, Boklye
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 991 - 998
  • [22] Robust estimation of power quality disturbances using unscented H∞ filter
    Sahoo, Harish K.
    Dash, P. K.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 438 - 447
  • [23] Unified Framework for Robust Estimation of Brain Networks From fMRI Using Temporal and Spatial Correlation Analyses
    Wang, Yongmei Michelle
    Xia, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) : 1296 - 1307
  • [24] Robust H2 and H∞ filters for uncertain LFT systems
    Sun, K
    Packard, A
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2612 - 2618
  • [25] Robust H2 and H∞ filters for uncertain LFT systems
    Sun, KP
    Packard, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) : 715 - 720
  • [26] Robust locally optimal filters: Kalman and Bayesian estimation theory
    Celebi, ME
    Kurz, L
    INFORMATION SCIENCES, 1996, 92 (1-4) : 1 - 32
  • [27] Highly robust pose estimator based on synthetic estimation filters
    Kostrzewski, A
    Kim, DH
    Savant, G
    Kim, J
    Vasiliev, A
    Jannson, T
    ALGORITHMS, DEVICES, AND SYSTEMS FOR OPTICAL INFORMATION PROCESSING, 1997, 3159 : 60 - 66
  • [28] Reinforced Lattice Kalman Filters: A Robust Nonlinear Estimation Strategy
    Rahimnejad, Abolfazl
    Enayati, Javad
    Vanfretti, Luigi
    Gadsden, Stephen Andrew
    Alshabi, Mohammad
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 410 - 423
  • [29] Modeling the haemodynamic response in fMRI using smooth FIR filters
    Goutte, C
    Nielsen, FÅ
    Hansen, LK
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (12) : 1188 - 1201
  • [30] DSP implementation of robust filters with fine detail preserving for noise suppression using RM-estimation
    Ponomaryov, V
    Funes, FJG
    de Rivera, LN
    Pogrebnyak, EB
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXIV, 2001, 4472 : 584 - 594