Orientability for gauge theories on Calabi-Yau manifolds

被引:28
|
作者
Cao, Yalong [1 ]
Leung, Naichung Conan
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
Orientability; Moduli spaces of sheaves; Calabi-Yau manifolds; Shifted symplectic structures; Gauge theory; Dirac operators; DONALDSON-THOMAS THEORY; GROMOV-WITTEN THEORY; MODULI SPACES; SHEAVES;
D O I
10.1016/j.aim.2017.04.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study orientability issues of moduli spaces from gauge theories on Calabi-Yau manifolds. Our results generalize and strengthen those for Donaldson Thomas theory on Calabi -Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 70
页数:23
相关论文
共 50 条
  • [11] Dihedral symmetries of gauge theories from dual Calabi-Yau threefolds
    Bastian, Brice
    Hohenegger, Stefan
    PHYSICAL REVIEW D, 2019, 99 (06)
  • [12] EXOTIC DEFORMATIONS OF CALABI-YAU MANIFOLDS
    De Bartolomeis, Paolo
    Tomassini, Adriano
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) : 391 - 415
  • [13] On stability manifolds of Calabi-Yau surfaces
    Okada, So
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [14] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [15] CALABI-YAU MANIFOLDS - MOTIVATIONS AND CONSTRUCTIONS
    HUBSCH, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) : 291 - 318
  • [16] ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS
    Haskins, Mark
    Hein, Hans-Joachim
    Nordstroem, Johannes
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 213 - 265
  • [17] MODULI SPACE OF CALABI-YAU MANIFOLDS
    CANDELAS, P
    DELAOSSA, XC
    NUCLEAR PHYSICS B, 1991, 355 (02) : 455 - 481
  • [18] COMPLETE INTERSECTION CALABI-YAU MANIFOLDS
    CANDELAS, P
    DALE, AM
    LUTKEN, CA
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1988, 298 (03) : 493 - 525
  • [19] CALABI-YAU DOMAINS IN THREE MANIFOLDS
    Martin, Francisco
    Meeks, William H., III
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) : 1329 - 1344
  • [20] Deformations of elliptic Calabi-Yau manifolds
    Kollar, J.
    RECENT ADVANCES IN ALGEBRAIC GEOMETRY, 2015, 417 : 254 - 290