Nonperturbative double scaling limits

被引:3
|
作者
Ferrari, F
机构
[1] Univ Neuchatel, Inst Phys, CH-2000 Neuchatel, Switzerland
[2] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2003年 / 18卷 / 04期
关键词
large N; double scaling limits; non-critical string theory;
D O I
10.1142/S0217751X03012424
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Recently, the author has proposed a generalization of the matrix and vector models approach to the theory of random surfaces and polymers. The idea is to replace the simple matrix or vector (path)-integrals by gauge theory or nonlinear a model (path)integrals. We explain how this solves one of the most fundamental limitations of the classic approach: we automatically obtain nouperturbative definitions in non-Borel summable cases. This is exemplified in the simplest possible examples involving O(N) symmetric nonlinear a models with N-dimensional target spaces, for which we construct (multi)critical metrics. The nonperturbative definitions of the double scaled, manifestly positive, partition functions rely on remarkable identities involving (path)-integrals.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 50 条
  • [41] Scaling Limits for Mixed Kernels
    Doron S. Lubinsky
    Constructive Approximation, 2016, 43 : 311 - 336
  • [42] Scaling limits of double-gate and surround-gate Z-RAM cells
    Butt, Nauman Z.
    Alam, Muhammad Ashraful
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) : 2255 - 2262
  • [43] Double scaling limits, Airy functions and multicritical behaviour in O(N) vector sigma models
    Maeder, J
    Ruhl, W
    NUCLEAR PHYSICS B, 1996, : 219 - 225
  • [44] Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition
    von Gersdorff, G
    Wetterich, C
    PHYSICAL REVIEW B, 2001, 64 (05) : 0545131 - 0545135
  • [45] Nonperturbative scaling theory of free magnetic moment phases in disordered metals
    Zhuravlev, A.
    Zharekeshev, I.
    Gorelov, E.
    Lichtenstein, A. I.
    Mucciolo, E. R.
    Kettemann, S.
    PHYSICAL REVIEW LETTERS, 2007, 99 (24)
  • [46] Double parton scattering: Impact of nonperturbative parton correlations
    Ostapchenko, Sergey
    Bleicher, Marcus
    PHYSICAL REVIEW D, 2016, 93 (03):
  • [48] Scaling limits of random Polya trees
    Panagiotou, Konstantinos
    Stufler, Benedikt
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 801 - 820
  • [49] Physical limits for scaling of integrated circuits
    Nawrocki, Waldemar
    INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS DUBNA-NANO 2010, 2010, 248
  • [50] QUENCHED SCALING LIMITS OF TRAP MODELS
    Jara, Milton
    Landim, Claudio
    Teixeira, Augusto
    ANNALS OF PROBABILITY, 2011, 39 (01): : 176 - 223