Nonperturbative double scaling limits

被引:3
|
作者
Ferrari, F
机构
[1] Univ Neuchatel, Inst Phys, CH-2000 Neuchatel, Switzerland
[2] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
来源
关键词
large N; double scaling limits; non-critical string theory;
D O I
10.1142/S0217751X03012424
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Recently, the author has proposed a generalization of the matrix and vector models approach to the theory of random surfaces and polymers. The idea is to replace the simple matrix or vector (path)-integrals by gauge theory or nonlinear a model (path)integrals. We explain how this solves one of the most fundamental limitations of the classic approach: we automatically obtain nouperturbative definitions in non-Borel summable cases. This is exemplified in the simplest possible examples involving O(N) symmetric nonlinear a models with N-dimensional target spaces, for which we construct (multi)critical metrics. The nonperturbative definitions of the double scaled, manifestly positive, partition functions rely on remarkable identities involving (path)-integrals.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 50 条
  • [31] Scaling limits of periodic monopoles
    Maldonado, Rafael
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):
  • [32] PHYSICS AT THE LIMITS OF VLSI SCALING
    SOLOMON, PM
    AIP CONFERENCE PROCEEDINGS, 1984, (122) : 172 - 180
  • [33] Scaling limits of resistive memories
    Zhirnov, Victor V.
    Meade, Roy
    Cavin, Ralph K.
    Sandhu, Gurtej
    NANOTECHNOLOGY, 2011, 22 (25)
  • [34] Scaling limits of the Schelling model
    Holden, Nina
    Sheffield, Scott
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (1-2) : 219 - 292
  • [35] Highly Anisotropic Scaling Limits
    M. Cassandro
    M. Colangeli
    E. Presutti
    Journal of Statistical Physics, 2016, 162 : 997 - 1030
  • [36] SCALING LIMITS FOR INTERACTING DIFFUSIONS
    VARADHAN, SRS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) : 313 - 353
  • [37] On scaling limits and Brownian interlacements
    Sznitman, Alain-Sol
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (04): : 555 - 592
  • [38] Highly Anisotropic Scaling Limits
    Cassandro, M.
    Colangeli, M.
    Presutti, E.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (04) : 997 - 1030
  • [39] Random Maps and Their Scaling Limits
    Miermont, Gregory
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 197 - 224
  • [40] ON THE SCALING LIMITS OF PLANAR PERCOLATION
    Schramm, Oded
    Smirnov, Stanislav
    Garban, Christophe
    ANNALS OF PROBABILITY, 2011, 39 (05): : 1768 - 1814