Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
|
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
  • [41] The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation
    Wen, Jin
    Cheng, Jun-Feng
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (07) : 925 - 941
  • [42] Discrete monotone method for space-fractional nonlinear reaction-diffusion equations
    Flores, Salvador
    Macias-Diaz, Jorge E.
    Hendy, Ahmed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [43] An Inverse Source Problem of Space-Fractional Diffusion Equation
    Songshu Liu
    Lixin Feng
    Guilai Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4405 - 4424
  • [44] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [45] On a backward problem for nonlinear fractional diffusion equations
    Nguyen Huy Tuan
    Le Nhat Huynh
    Tran Bao Ngoc
    Yong Zhou
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 76 - 84
  • [46] Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations
    Zhang, Xinxia
    Wang, Jihan
    Wu, Zhongshu
    Tang, Zheyi
    Zeng, Xiaoyan
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [47] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [48] Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional
    Abdelkawy, M. A.
    Alyami, S. A.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [49] A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives
    Macias-Diaz, J. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 40 - 58
  • [50] Data regularization for a backward time-fractional diffusion problem
    Wang, Liyan
    Liu, Jijun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) : 3613 - 3626