Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
|
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
  • [31] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Yu, Jian-Wei
    Zhang, Chun-Hua
    Huang, Xin
    Wang, Xiang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 537 - 562
  • [32] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    Advances in Difference Equations, 2019
  • [33] Optimal regularization for an unknown source of space-fractional diffusion equation
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    Nguyen Dang Minh
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 184 - 206
  • [34] A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
    Zheng, Yunying
    Zhao, Zhengang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [35] An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation
    Xiao-Xiao Li
    Jin Li Lei
    Fan Yang
    Journal of Inequalities and Applications, 2014
  • [36] An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation
    Li, Xiao-Xiao
    Lei, Jin Li
    Yang, Fan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [37] Richardson extrapolation method for solving the Riesz space fractional diffusion problem
    Qi, Ren-jun
    Sun, Zhi-zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (03)
  • [38] An efficient quadratic finite volume method for variable coefficient Riesz space-fractional diffusion equations
    Li, Fangli
    Fu, Hongfei
    Liu, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2934 - 2951
  • [39] Tikhonov regularization method for a backward problem for the time-fractional diffusion equation
    Wang, Jun-Gang
    Wei, Ting
    Zhou, Yu-Bin
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (18-19) : 8518 - 8532
  • [40] An Inverse Source Problem of Space-Fractional Diffusion Equation
    Liu, Songshu
    Feng, Lixin
    Zhang, Guilai
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4405 - 4424