Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
|
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
  • [1] A regularization for a Riesz-Feller space-fractional backward diffusion problem
    Cheng, Hao
    Fu, Chu-Li
    Zheng, Guang-Hui
    Gao, Jie
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (06) : 860 - 872
  • [2] Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem
    Zheng, G. H.
    Wei, T.
    INVERSE PROBLEMS, 2010, 26 (11)
  • [3] FILTER REGULARIZATION METHOD FOR A NONLINEAR RIESZ-FELLER SPACE-FRACTIONAL BACKWARD DIFFUSION PROBLEM WITH TEMPORALLY DEPENDENT THERMAL CONDUCTIVITY
    Dinh Nguyen Duy Hai
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) : 1112 - 1129
  • [4] Filter Regularization Method for a Nonlinear Riesz-Feller Space-Fractional Backward Diffusion Problem with Temporally Dependent Thermal Conductivity
    Dinh Nguyen Duy Hai
    Fractional Calculus and Applied Analysis, 2021, 24 : 1112 - 1129
  • [5] Solving the Riesz-Feller space-fractional backward diffusion problem by a generalized Tikhonov method
    Zhang, Hongwu
    Zhang, Xiaoju
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] On a Riesz-Feller space fractional backward diffusion problem with a nonlinear source
    Nguyen Huy Tuan
    Dinh Nguyen Duy Hai
    Le Dinh Long
    Van Thinh Nguyen
    Kirane, Mokhtar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 103 - 126
  • [7] A Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient: regularization and error estimates
    Nguyen Huy Tuan
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    Duong Dang Xuan Thanh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 4040 - 4064
  • [8] The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem
    Yang F.
    Li X.-X.
    Li D.-G.
    Wang L.
    Mathematics in Computer Science, 2017, 11 (1) : 91 - 110
  • [9] Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method
    Zheng, Guang-Hui
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 99 - 128
  • [10] The Backward Problem for a Nonlinear Riesz-Feller Diffusion Equation
    Hai D.N.D.
    Trong D.D.
    Acta Mathematica Vietnamica, 2018, 43 (3) : 449 - 470