Local existence with physical vacuum boundary condition to Euler equations with damping

被引:35
|
作者
Xu, CJ
Tong, Y
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Rouen, Math Lab, F-76821 Mont St Aignan, France
关键词
Euler equations; physical vacuum boundary condition; Littlewood-Paley theory; local existence;
D O I
10.1016/j.jde.2004.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the local existence of solutions to Euler equations with linear damping under the assumption of physical vacuum boundary condition. By using the transformation introduced in Lin and Yang (Methods Appl. Anal. 7 (3) (2000) 495) to capture the singularity of the boundary, we prove a local existence theorem on a perturbation of a planar wave solution by using Littlewood-Paley theory and justifies the transformation introduced in Liu and Yang (2000) in a rigorous setting. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 231
页数:15
相关论文
共 50 条
  • [21] Local existence for the stochastic Euler equations with Levy noise
    Kukavica, Igor
    Xu, Fanhui
    ASYMPTOTIC ANALYSIS, 2019, 113 (1-2) : 1 - 27
  • [22] REMARKS ON THE FREE BOUNDARY PROBLEM OF COMPRESSIBLE EULER EQUATIONS IN PHYSICAL VACUUM WITH GENERAL INITIAL DENSITIES
    Hao, Chengchun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (09): : 2885 - 2931
  • [23] Initial Boundary Value Problem for Compressible Euler Equations with Damping
    Pan, Ronghua
    Zhao, Kun
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) : 2257 - 2282
  • [24] Initial boundary value problems for compressible Euler equations with damping
    Pan, Ronghua
    Zhao, Kun
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 825 - 834
  • [25] Analytical solutions and asymptotic profiles of vacuum free boundary for the compressible Euler equations with time-dependent damping
    Li, Kunquan
    Jia, Jia
    Zhang, Meng
    Guo, Zhengguang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (02)
  • [26] GLOBAL EXISTENCE AND CONVERGENCE RATES OF SOLUTIONS FOR THE COMPRESSIBLE EULER EQUATIONS WITH DAMPING
    Wei, Ruiying
    Li, Yin
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (08): : 2949 - 2967
  • [27] APPROXIMATION AND EXISTENCE OF VACUUM STATES IN THE MULTISCALE FLOWS OF COMPRESSIBLE EULER EQUATIONS
    Chu, Jay
    Hong, John M.
    Lee, Hsin-Yi
    MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 104 - 130
  • [28] A Priori Estimates for the Free-Boundary 3D Compressible Euler Equations in Physical Vacuum
    Coutand, Daniel
    Lindblad, Hans
    Shkoller, Steve
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (02) : 559 - 587
  • [29] A Priori Estimates for the Free-Boundary 3D Compressible Euler Equations in Physical Vacuum
    Daniel Coutand
    Hans Lindblad
    Steve Shkoller
    Communications in Mathematical Physics, 2010, 296 : 559 - 587
  • [30] PROPAGATION OF LOCAL ANALYTICITY AT THE BOUNDARY FOR THE SOLUTIONS TO THE EULER EQUATIONS
    LEBAIL, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (10): : 495 - 498