A Priori Estimates for the Free-Boundary 3D Compressible Euler Equations in Physical Vacuum

被引:76
|
作者
Coutand, Daniel [1 ,2 ]
Lindblad, Hans [3 ]
Shkoller, Steve [4 ]
机构
[1] Heriot Watt Univ, CANPDE, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[4] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
英国工程与自然科学研究理事会;
关键词
WELL-POSEDNESS; SURFACE-TENSION; MOTION;
D O I
10.1007/s00220-010-1028-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by p(rho) = C (gamma) rho (gamma) for gamma > 1. The vacuum condition necessitates the vanishing of the pressure, and hence density, on the dynamic boundary, which creates a degenerate and characteristic hyperbolic free-boundary system to which standard methods of symmetrizable hyperbolic equations cannot be applied.
引用
收藏
页码:559 / 587
页数:29
相关论文
共 50 条