Vertex-Edge Domination

被引:0
|
作者
Lewis, Jason [1 ]
Hedetniemi, Stephen T. [1 ]
Haynes, Teresa W. [2 ]
Fricke, Gerd H. [3 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[3] Morehead State Univ, Dept Math & Comp Sci, Morehead, KY 40351 USA
关键词
domination; total covering; vertex-edge domination;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most of the research on domination focuses on vertices dominating other vertices. In this paper we consider vertex-edge domination where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. The minimum cardinality of a vertex-edge dominating set of a graph G is the vertex-edge domination number gamma(ve)(G). We present bounds on gamma(ve)(G) and relationships between gamma(ve)(G) and other domination related parameters. Since any ordinary dominating set is also a vertex-edge dominating set, it follows that gamma(ve)(G) is bounded above by the domination number of G. Our main result characterizes the trees having equal domination and vertex-edge domination numbers.
引用
收藏
页码:193 / 213
页数:21
相关论文
共 50 条
  • [31] On Two Open Problems on Double Vertex-Edge Domination in Graphs
    Miao, Fang
    Fan, Wenjie
    Chellali, Mustapha
    Khoeilar, Rana
    Sheikholeslami, Seyed Mahmoud
    Soroudi, Marzieh
    MATHEMATICS, 2019, 7 (11)
  • [32] On Vertex, Edge, and Vertex-Edge Random Graphs
    Beer, Elizabeth
    Fill, James Allen
    Janson, Svante
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [33] A NEW LOWER BOUND ON TOTAL VERTEX-EDGE DOMINATION NUMBER OF A TREE
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 492 - 497
  • [34] Influence of the Edge Removal, Edge Addition and Edge Subdivision on the Double Vertex-Edge Domination Number of a Graph
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (06): : 391 - 393
  • [35] Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs
    Buyukcolak, Yasemin
    DISCRETE OPTIMIZATION, 2025, 55
  • [36] ON VERTEX-EDGE AND EDGE-VERTEX CONNECTIVITY INDICES OF GRAPHS
    Pawar, Shiladhar
    Naji, Ahmed mohsen
    Soner, Nandappa d.
    Ashrafi, Ali reza
    Ghalavand, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (02): : 225 - 239
  • [37] The vertex-edge visibility graph of a polygon
    O'Rourke, J
    Streinu, I
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (02): : 105 - 120
  • [38] On a Vertex-Edge Marking Game on Graphs
    Boštjan Brešar
    Nicolas Gastineau
    Tanja Gologranc
    Olivier Togni
    Annals of Combinatorics, 2021, 25 : 179 - 194
  • [39] On a Vertex-Edge Marking Game on Graphs
    Bresar, Bostjan
    Gastineau, Nicolas
    Gologranc, Tanja
    Togni, Olivier
    ANNALS OF COMBINATORICS, 2021, 25 (01) : 179 - 194
  • [40] The edge-vertex domination and weighted edge-vertex domination problem
    Li, Peng
    Xue, Xinyi
    Zhou, Xingli
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (02)