A NEW LOWER BOUND ON TOTAL VERTEX-EDGE DOMINATION NUMBER OF A TREE

被引:0
|
作者
Senthilkumar, B. [1 ]
Kumar, H. Naresh [1 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Deemed Univ, Dept Math, Sch Arts Sci Humanities & Educ, Thanjavur 613401, India
关键词
Total vertex-edge dominating set; Total dominating set; trees;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex v of a graph G = (V, E) is said to vertex-edge dominate every edge incident to v, as well as every edge adjacent to these incident edges. A subset S & SUBE; V is a vertex-edge dominating set (ve-dominating set) if every edge of E is vertex-edge dominated by at least one vertex of S. A subset D & SUBE; V(G) is a total dominating set of G if every vertex of V(G) has at least one neighbor in D. The minimum cardinality of total dominating set of G is called total domination number-yt(G). A ve-dominating set is a total ve-dominating set if its induced subgraph has no isolated vertices. The minimum cardinality of a total vertex-edge dominating set of G is the total vertex-edge domination number-yvte(G). In this paper, we prove that-yvte(G)& GE; (-yt(T)- s+ 2)/2 for every non-trivial tree with s support vertices, and characterize extremal trees attaining this bound.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 50 条
  • [1] A lower bound on the total vertex-edge domination number of a tree
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [2] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [3] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828
  • [4] ON TOTAL VERTEX-EDGE DOMINATION
    Sahin, B.
    Sahin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 128 - 133
  • [5] TOTAL VERTEX-EDGE DOMINATION IN TREES
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    Volkmann, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 127 - 143
  • [6] A New Lower Bound on the Total Domination Number of a Tree
    Desormeaux, Wyatt J.
    Henning, Michael A.
    ARS COMBINATORIA, 2018, 138 : 305 - 322
  • [7] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [8] Total outer connected vertex-edge domination
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [9] Vertex-edge perfect Roman domination number
    Al Subaiei, Bana
    AlMulhim, Ahlam
    Akwu, Abolape Deborah
    AIMS MATHEMATICS, 2023, 8 (09): : 21472 - 21483
  • [10] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    UTILITAS MATHEMATICA, 2010, 81 : 193 - 213