A NEW LOWER BOUND ON TOTAL VERTEX-EDGE DOMINATION NUMBER OF A TREE

被引:0
|
作者
Senthilkumar, B. [1 ]
Kumar, H. Naresh [1 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Deemed Univ, Dept Math, Sch Arts Sci Humanities & Educ, Thanjavur 613401, India
关键词
Total vertex-edge dominating set; Total dominating set; trees;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex v of a graph G = (V, E) is said to vertex-edge dominate every edge incident to v, as well as every edge adjacent to these incident edges. A subset S & SUBE; V is a vertex-edge dominating set (ve-dominating set) if every edge of E is vertex-edge dominated by at least one vertex of S. A subset D & SUBE; V(G) is a total dominating set of G if every vertex of V(G) has at least one neighbor in D. The minimum cardinality of total dominating set of G is called total domination number-yt(G). A ve-dominating set is a total ve-dominating set if its induced subgraph has no isolated vertices. The minimum cardinality of a total vertex-edge dominating set of G is the total vertex-edge domination number-yvte(G). In this paper, we prove that-yvte(G)& GE; (-yt(T)- s+ 2)/2 for every non-trivial tree with s support vertices, and characterize extremal trees attaining this bound.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 50 条
  • [21] Vertex-edge domination in cubic graphs
    Ziemann, Radoslaw
    Zylinski, Pawel
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [22] A new lower bound for the independent domination number of a tree
    Cabrera-Martinez, Abel
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1951 - 1956
  • [23] DOMINATING VERTEX COVERS: THE VERTEX-EDGE DOMINATION PROBLEM
    Klostermeyer, William F.
    Messinger, Margaret Ellen
    Yeo, Anders
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 123 - 132
  • [24] A new lower bound on the total domination number of a graph
    Hajian, Majid
    Henning, Michael A.
    Rad, Nader Jafari
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 35 - 48
  • [25] Influence of the Edge Removal, Edge Addition and Edge Subdivision on the Double Vertex-Edge Domination Number of a Graph
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (06): : 391 - 393
  • [27] Vertex-edge domination dot critical graphs
    Meddah, Nacera
    Chellali, Mustapha
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024,
  • [28] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    Discrete Applied Mathematics, 2022, 319 : 351 - 361
  • [29] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 351 - 361
  • [30] Lower bound on the paired domination number of a tree
    Raczek, Joanna
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 34 : 343 - 347