Wavefunction controllability for finite-dimensional bilinear quantum systems

被引:65
|
作者
Turinici, G
Rabitz, H
机构
[1] INRIA Rocquencourt, F-78153 Le Chesnay, France
[2] ENPC Champs Sur Marne, CERMICS, F-77455 Marne La Vallee, France
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
关键词
D O I
10.1088/0305-4470/36/10/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.
引用
收藏
页码:2565 / 2576
页数:12
相关论文
共 50 条
  • [21] On the control of the final speed for a class of finite-dimensional linear systems: controllability and regulation
    Rachik, Mostafa
    Khaloufi, Issam
    Benfatah, Youssef
    Boutayeb, Hamza
    Laarabi, Hassan
    ARCHIVES OF CONTROL SCIENCES, 2023, 33 (03) : 497 - 525
  • [22] LINEAR AND BILINEAR INFINITE-DIMENSIONAL REPRESENTATIONS OF FINITE-DIMENSIONAL NON-LINEAR SYSTEMS
    BANKS, SP
    ASHTIANI, A
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1985, 16 (07) : 841 - 853
  • [23] Notions of controllability for bilinear multilevel quantum systems
    Albertini, F
    D'Alessandro, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) : 1399 - 1403
  • [24] Approximate controllability of infinite dimensional bilinear systems
    Zhang Shenghai
    I. Joó
    Acta Mathematicae Applicatae Sinica, 1998, 14 (1) : 58 - 67
  • [25] Finite-dimensional quantum systems:: Complementarity, phase space, and all that
    Sánchez-Soto, LL
    Klimov, AB
    de Guise, H
    OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 391 - 396
  • [26] Finite-dimensional quantum systems: Complementarity, phase space, and all that
    L. L. Sánchez-Soto
    A. B. Klimov
    H. de Guise
    Optics and Spectroscopy, 2005, 99 : 391 - 396
  • [27] An implicit Lyapunov control for finite-dimensional closed quantum systems
    Zhao, Shouwei
    Lin, Hai
    Sun, Jitao
    Xue, Zhengui
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (11) : 1212 - 1228
  • [28] FINITE-DIMENSIONAL APPROXIMATIONS OF QUANTUM SYSTEMS AND CONNES' EMBEDDING CONJECTURE
    Scholz, V. B.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 545 - 545
  • [29] Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems
    Adam, P.
    Andreev, V. A.
    Isar, A.
    Man'ko, M. A.
    Man'ko, V. I.
    PHYSICS LETTERS A, 2017, 381 (34) : 2778 - 2782
  • [30] Frame representation of quantum systems with finite-dimensional Hilbert space
    Cotfas, Nicolae
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)