Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems

被引:8
|
作者
Adam, P. [1 ]
Andreev, V. A. [2 ]
Isar, A. [3 ]
Man'ko, M. A. [2 ]
Man'ko, V. I. [2 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] PN Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[3] Natl Inst Phys & Nucl Engn, POB MG6, Bucharest, Romania
关键词
Quasi-probability distributions; Star product; Symbol; Quantizer; Dequantizer; Discrete Wigner function; WIGNER FUNCTIONS; PHASE-SPACE; PROBABILITY-DISTRIBUTION; TOMOGRAPHY; MECHANICS; STATES; DISTRIBUTIONS; OPERATORS; UNITARY; BASES;
D O I
10.1016/j.physleta.2017.06.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of finding and characterizing minimal sets of dequantizers and quantizers applied in the mapping of operators onto functions is considered, for finite-dimensional quantum systems. The general properties of such sets are determined. An explicit description of all the minimum self-dual sets of dequantizers and quantizers for a qubit system is derived. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2778 / 2782
页数:5
相关论文
共 50 条
  • [1] Continuous Sets of Dequantizers and Quantizers for One-Qubit States*
    Adam, Peter
    Andreev, Vladimir A.
    Isar, Aurelian
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2016, 37 (06) : 544 - 555
  • [2] Continuous Sets of Dequantizers and Quantizers for One-Qubit States*
    Peter Adam
    Vladimir A. Andreev
    Aurelian Isar
    Margarita A. Man’ko
    Vladimir I. Man’ko
    Journal of Russian Laser Research, 2016, 37 : 544 - 555
  • [3] On the Interaction of Two Finite-Dimensional Quantum Systems
    Tomislav P. Živković
    Journal of Mathematical Chemistry, 2002, 32 : 39 - 71
  • [4] On the interaction of two finite-dimensional quantum systems
    Zivkovic, TP
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 32 (01) : 39 - 71
  • [5] Teleportation of general finite-dimensional quantum systems
    Albeverio, S
    Fei, SM
    PHYSICS LETTERS A, 2000, 276 (1-4) : 8 - 11
  • [6] Limiting proper minimal points of nonconvex sets in finite-dimensional spaces
    Shahbeyk, Shokouh
    Soleimani-Damaneh, Majid
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 379 - 384
  • [7] FINITE-DIMENSIONAL ATTAINABLE SETS FOR STOCHASTIC CONTROL-SYSTEMS
    BOYARSKY, A
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (03) : 429 - 445
  • [9] Dimensions, lengths, and separability in finite-dimensional quantum systems
    Chen, Lin
    Dokovic, Dragomir Z.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [10] INDIRECT QUANTUM CONTROL FOR FINITE-DIMENSIONAL COUPLED SYSTEMS
    Nie, J.
    Fu, H. C.
    Yi, X. X.
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (1-2) : 87 - 96