On the Interaction of Two Finite-Dimensional Quantum Systems

被引:0
|
作者
Tomislav P. Živković
机构
来源
关键词
interaction of quantum systems; perturbation; diagonalisation; generalised eigenvalue equation; eigenvalues; eigenstates;
D O I
暂无
中图分类号
学科分类号
摘要
Interaction of quantum system Sa described by the generalised ρ×ρ eigenvalue equation A|Θs〉=EsSa|Θs〉 (s=1,...,ρ) with quantum system Sb described by the generalised n×n eigenvalue equation B|Φi〉=λiSb|Φi〉 (i=1,...,n) is considered. With the system Sa is associated ρ-dimensional space Xρa and with the system Sb is associated an n-dimensional space Xnb that is orthogonal to Xρa. Combined system S is described by the generalised (ρ+n)×(ρ+n) eigenvalue equation [A+B+V]|Ψk〉=εk[Sa+Sb+P]|Ψk〉 (k=1,...,n+ρ) where operators V and P represent interaction between those two systems. All operators are Hermitian, while operators Sa,Sb and S=Sa+Sb+P are, in addition, positive definite. It is shown that each eigenvalue εk∉λi of the combined system is the eigenvalue of the ρ×ρ eigenvalue equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$[\Omega (\varepsilon _k ) + A]|\Psi _k^a \rangle = \varepsilon _k S^a |\Psi _k^a \rangle $$ \end{document}. Operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega (\varepsilon )$$ \end{document} in this equation is expressed in terms of the eigenvalues λi of the system Sb and in terms of matrix elements 〈χs|V|Φi〉 and 〈χs|P|Φi〉 where vectors |χs〉 form a base in Xρa. Eigenstate |Ψka〉 of this equation is the projection of the eigenstate |Ψk〉 of the combined system on the space Xρa. Projection |Ψkb〉 of |Ψk〉 on the space Xnb is given by |Ψkb〉=(εkSb−B)−1(V−εkP})|Ψka〉 where (εkSb−B)−1 is inverse of (εkSb−B) in Xnb. Hence, if the solution to the system Sb is known, one can obtain all eigenvalues εk∉λi} and all the corresponding eigenstates |Ψk〉 of the combined system as a solution of the above ρ×ρ eigenvalue equation that refers to the system Sa alone. Slightly more complicated expressions are obtained for the eigenvalues εk∈λi} and the corresponding eigenstates, provided such eigenvalues and eigenstates exist.
引用
收藏
页码:39 / 71
页数:32
相关论文
共 50 条
  • [1] On the interaction of two finite-dimensional quantum systems
    Zivkovic, TP
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 32 (01) : 39 - 71
  • [2] Teleportation of general finite-dimensional quantum systems
    Albeverio, S
    Fei, SM
    PHYSICS LETTERS A, 2000, 276 (1-4) : 8 - 11
  • [3] Dimensions, lengths, and separability in finite-dimensional quantum systems
    Chen, Lin
    Dokovic, Dragomir Z.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [4] INDIRECT QUANTUM CONTROL FOR FINITE-DIMENSIONAL COUPLED SYSTEMS
    Nie, J.
    Fu, H. C.
    Yi, X. X.
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (1-2) : 87 - 96
  • [5] QUASIDISTRIBUTIONS AND COHERENT STATES FOR FINITE-DIMENSIONAL QUANTUM SYSTEMS
    Marchiolli, M. A.
    Ruzzi, M.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (04) : 381 - 392
  • [6] Wavefunction controllability for finite-dimensional bilinear quantum systems
    Turinici, G
    Rabitz, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10): : 2565 - 2576
  • [7] Hudson's theorem for finite-dimensional quantum systems
    Gross, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [8] Rapid Lyapunov control of finite-dimensional quantum systems
    Kuang, Sen
    Dong, Daoyi
    Petersen, Ian R.
    AUTOMATICA, 2017, 81 : 164 - 175
  • [9] Quasidistributions and coherent states for finite-dimensional quantum systems
    M. A. Marchiolli
    M. Ruzzi
    Journal of Russian Laser Research, 2011, 32 : 381 - 392
  • [10] Finite-dimensional quantum systems:: Complementarity, phase space, and all that
    Sánchez-Soto, LL
    Klimov, AB
    de Guise, H
    OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 391 - 396