A comparison on multiple level features for fusion of hyperspectral and LiDAR data

被引:0
|
作者
Liao, Wenzhi [1 ]
Pizurica, Aleksandra [1 ]
Luo, Renbo [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, TELIN, IPI, iMinds, B-9000 Ghent, Belgium
关键词
Urban remote sensing; graph fusion; deep learning; hyperspectral; LiDAR; REMOTE-SENSING DATA; ATTRIBUTE PROFILES; CLASSIFICATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensed images contain a wealth of information. Next to diverse sensor technologies that allow us to measure different aspects of objects on the Earth (spectral characteristics in hyperspectral (HS) images, height in Light Detection And Ranging (LiDAR) data), we also have advanced image processing algorithms that have been developed to mine relevant information from multisensor remote sensing data for Earth observation. However, automatic interpretation of remote sensed images is still very difficult. In this paper, we compare multiple level features for fusion of HS and LiDAR data for urban area classification. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate that middle-level morphological attribute features outperform high-level deep learning features. Compared to the methods using raw data fusion and deep learning fusion, with the graph-based fusion method [4], overall classification accuracies were improved by 8%.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion
    Zhang, Mengmeng
    Ghamisi, Pedram
    Li, Wei
    REMOTE SENSING LETTERS, 2017, 8 (10) : 957 - 966
  • [42] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    Remote Sensing of Environment, 2014, 148 : 70 - 83
  • [43] COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA WITH INFORMATION FUSION AND DEEP NETS
    Chen, Chen
    Zhao, Xudong
    Li, Wei
    Tao, Ran
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2475 - 2478
  • [44] Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification
    Wang, Hongzhou
    Glennie, Craig
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 : 1 - 11
  • [45] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    REMOTE SENSING OF ENVIRONMENT, 2014, 148 : 70 - 83
  • [46] Modality Fusion Vision Transformer for Hyperspectral and LiDAR Data Collaborative Classification
    Yang, Bin
    Wang, Xuan
    Xing, Ying
    Cheng, Chen
    Jiang, Weiwei
    Feng, Quanlong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17052 - 17065
  • [47] SEMI-SUPERVISED GRAPH FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION
    Liao, Wenzhi
    Xia, Junshi
    Du, Peijun
    Philips, Wilfried
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 53 - 56
  • [48] A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data
    Li, Jiaojiao
    Ma, Yinle
    Song, Rui
    Xi, Bobo
    Hong, Danfeng
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    Remote Sensing of Environment, 2014, 148 : 70 - 83
  • [50] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DIMENSION REDUCTION AND MAXIMUM LIKELIHOOD
    Abbasi, B.
    Arefi, H.
    Bigdeli, B.
    Motagh, M.
    Roessner, S.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 569 - 573