A comparison on multiple level features for fusion of hyperspectral and LiDAR data

被引:0
|
作者
Liao, Wenzhi [1 ]
Pizurica, Aleksandra [1 ]
Luo, Renbo [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, TELIN, IPI, iMinds, B-9000 Ghent, Belgium
关键词
Urban remote sensing; graph fusion; deep learning; hyperspectral; LiDAR; REMOTE-SENSING DATA; ATTRIBUTE PROFILES; CLASSIFICATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensed images contain a wealth of information. Next to diverse sensor technologies that allow us to measure different aspects of objects on the Earth (spectral characteristics in hyperspectral (HS) images, height in Light Detection And Ranging (LiDAR) data), we also have advanced image processing algorithms that have been developed to mine relevant information from multisensor remote sensing data for Earth observation. However, automatic interpretation of remote sensed images is still very difficult. In this paper, we compare multiple level features for fusion of HS and LiDAR data for urban area classification. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate that middle-level morphological attribute features outperform high-level deep learning features. Compared to the methods using raw data fusion and deep learning fusion, with the graph-based fusion method [4], overall classification accuracies were improved by 8%.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] A NEW MULTI-LEVEL ATTENTION FEATURE FUSION METHOD FOR HYPERSPECTRAL AND LIDAR DATA JOINT CLASSIFICATION
    Song, Weiwei
    Gao, Zhi
    Fang, Leyuan
    Zhang, Yongjun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5978 - 5981
  • [32] Fusion of hyperspectral and LIDAR data using decision template-based fuzzy multiple classifier system
    Bigdeli, Behnaz
    Samadzadegan, Farhad
    Reinartz, Peter
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 309 - 320
  • [33] Multi-agent hyperspectral and lidar features fusion for urban vegetation mapping
    Sahar Khoramak
    Fatemeh Tabib Mahmoudi
    Earth Science Informatics, 2023, 16 : 165 - 173
  • [34] FUSION OF MULTI-SCALE HYPERSPECTRAL AND LIDAR FEATURES FOR TREE SPECIES MAPPING
    Liao, Wenzhi
    Van Coillie, Frieke
    Li, Liwei
    Zhao, Bin
    Gao, Lianru
    Philips, Wilfried
    Zhang, Bing
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2879 - 2882
  • [35] Multi-agent hyperspectral and lidar features fusion for urban vegetation mapping
    Khoramak, Sahar
    Mahmoudi, Fatemeh Tabib
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 165 - 173
  • [36] CLASSIFICATION OF CLOUDY HYPERSPECTRAL IMAGE AND LIDAR DATA BASED ON FEATURE FUSION AND DECISION FUSION
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2518 - 2521
  • [37] Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification
    Man, Qixia
    Dong, Pinliang
    Guo, Huadong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (06) : 1618 - 1644
  • [38] A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data
    Hasani, Hadiseh
    Samadzadegan, Farhad
    Reinartz, Peter
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 222 - 236
  • [39] SPARSE MODELING FOR HYPERSPECTRAL IMAGERY WITH LIDAR DATA FUSION FOR SUBPIXEL MAPPING
    Castrodad, Alexey
    Khuon, Timothy
    Rand, Robert
    Sapiro, Guillermo
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7275 - 7278
  • [40] Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis
    Buckley, Simon J.
    Kurz, Tobias H.
    Howell, John A.
    Schneider, Danilo
    COMPUTERS & GEOSCIENCES, 2013, 54 : 249 - 258