AN UNCERTAINTY-WEIGHTED ASYNCHRONOUS ADMM METHOD FOR PARALLEL PDE PARAMETER ESTIMATION

被引:6
|
作者
Fung, Samy Wu [1 ]
Ruthotto, Lars [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 05期
基金
美国国家科学基金会;
关键词
PDE-constrained optimization; parameter estimation; alternating direction method of multipliers; inverse problems; distributed optimization; multiphysics inversion; ALTERNATING DIRECTION METHOD; INVERSE PROBLEMS; MATRIX; OPTIMIZATION; REDUCTION; ALGORITHM; APPROXIMATION; JULIA;
D O I
10.1137/18M119166X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a global variable consensus alternating direction method of multipliers (ADMM) algorithm for estimating parameters of partial differential equations (PDEs) asynchronously and in parallel. Motivated by problems with many measurements, we partition the data and distribute the resulting subproblems among the available workers. Since each subproblem can be associated with different forward models and right-hand sides, this provides ample options for tailoring the method to different applications, including multisource and multiphysics PDE parameter estimation problems. We also consider an asynchronous variant of consensus ADMM to reduce communication and latency. Our key contribution is a novel weighting scheme that empirically increases the progress made in early iterations of the consensus ADMM scheme and is attractive when using a large number of subproblems. This makes consensus ADMM competitive for solving PDE parameter estimation, which incurs immense cost per iteration. The weights in our scheme are related to the uncertainty associated with the solutions of each subproblem. We exemplarily show that the weighting scheme combined with the asynchronous implementation reduces the time-to-solution and lowers the communication costs for a 3D single-physics and multiphysics PDE parameter estimation problems.
引用
收藏
页码:S129 / S148
页数:20
相关论文
共 50 条
  • [41] Heterogeneous parallel computing accelerated generalized likelihood uncertainty estimation (GLUE) method for fast hydrological model uncertainty analysis purpose
    Kan, Guangyuan
    He, Xiaoyan
    Ding, Liuqian
    Li, Jiren
    Hong, Yang
    Liang, Ke
    ENGINEERING WITH COMPUTERS, 2020, 36 (01) : 75 - 96
  • [42] Lsqnonlin method for parameter estimation of integrated enzyme kinetics by weighted nonlinear least-squares analysis
    Sun, W
    Zeng, GM
    Wei, WZ
    Paitoon, PT
    Wei, AL
    Li, XM
    Liu, HL
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2004, 14 : 172 - 176
  • [43] Estimation of Optimal Portfolio Weights Under Parameter Uncertainty and User-Specified Constraints: A Perturbation Method
    Christopher J. Bennett
    Ričardas Zitikis
    Journal of Statistical Theory and Practice, 2014, 8 (3) : 423 - 438
  • [44] A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China
    Yulin Wang
    Haomiao Cheng
    Liang Wang
    Zulin Hua
    Chengda He
    Jilin Cheng
    Environmental Science and Pollution Research, 2020, 27 : 20934 - 20949
  • [45] A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China
    Wang, Yulin
    Chen, Haomiao
    Wang, Liang
    Hua, Zulin
    He, Chengda
    Cheng, Jilin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (17) : 20934 - 20949
  • [46] Estimation of Optimal Portfolio Weights Under Parameter Uncertainty and User-Specified Constraints: A Perturbation Method
    Bennett, Christopher J.
    Zitikis, Ricardas
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2014, 8 (03) : 423 - 438
  • [47] Low-order probability-weighted moments method for wind speed probability distribution parameter estimation
    Pan, Xiaochun
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2012, 32 (05): : 131 - 136
  • [48] Parameter estimation of LFM signals based on optimal L-Cauchy weighted method in α stable distribution noise
    Jin Y.
    Hu B.-X.
    Ji H.-B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2016, 38 (07): : 1488 - 1495
  • [49] Uncertainty Quantification and Parameter Estimation in the Finite-Difference Frequency-Domain Method Using Polynomial Chaos
    Austin, Andrew C. M.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2021, 101 : 117 - 126
  • [50] Uncertainty quantification and parameter estimation in the finite-difference frequency-domain method using polynomial chaos
    Austin A.C.M.
    Progress In Electromagnetics Research M, 2021, 101 : 117 - 126